Cardinal inequalities involving the Hausdorff pseudocharacter
We establish several bounds on the cardinality of a topological space involving the Hausdorff pseudocharacter $H\psi(X)$. This invariant has the property $\psi_c(X)\leq H\psi(X)\leq\chi(X)$ for a Hausdorff space $X$. We show the cardinality of a Hausdorff space $X$ is bounded by $2^{pwL_c(X)H\psi(X)}$, where $pwL_c(X)\leq L(X)$ and $pwL_c(X)\leq c(X)$. This generalizes results of Bella and Spadaro, as well as Hodel. We show additionally that if $X$ is a Hausdorff linearly Lindel\"of space such that $H\psi(X)=\omega$, then $|X|\le 2^\omega$, under the assumption that either $2^{<\mathfrak{c}}=\mathfrak{c}$ or $\mathfrak{c}<\aleph_\omega$. The following game-theoretic result is shown: i…