First Accurate Normalization of the β -delayed α Decay of N16 and Implications for the C12(α,γ)O16 Astrophysical Reaction Rate
The C-12(alpha,gamma)O-16 reaction plays a central role in astrophysics, but its cross section at energies relevant for astrophysical applications is only poorly constrained by laboratory data. The reduced a width, gamma(11), of the bound 1(-) level in O-16 is particularly important to determine the cross section. The magnitude of gamma(11) is determined via sub-Coulomb a-transfer reactions or the beta-delayed a decay of N-16, but the latter approach is presently hampered by the lack of sufficiently precise data on the beta-decay branching ratios. Here we report improved branching ratios for the bound 1(-) level [b(beta,11) = (5.02 +/- 0.10) x 10(-2)] and for beta-delayed alpha emission [b(…