0000000000930439

AUTHOR

Heather C Mefford

High Rate of Recurrent De Novo Mutations in Developmental and Epileptic Encephalopathies

Item does not contain fulltext Developmental and epileptic encephalopathy (DEE) is a group of conditions characterized by the co-occurrence of epilepsy and intellectual disability (ID), typically with developmental plateauing or regression associated with frequent epileptiform activity. The cause of DEE remains unknown in the majority of cases. We performed whole-genome sequencing (WGS) in 197 individuals with unexplained DEE and pharmaco-resistant seizures and in their unaffected parents. We focused our attention on de novo mutations (DNMs) and identified candidate genes containing such variants. We sought to identify additional subjects with DNMs in these genes by performing targeted sequ…

research product

NEXMIF encephalopathy: an X-linked disorder with male and female phenotypic patterns

Contains fulltext : 231688.pdf (Publisher’s version ) (Closed access) PURPOSE: Pathogenic variants in the X-linked gene NEXMIF (previously KIAA2022) are associated with intellectual disability (ID), autism spectrum disorder, and epilepsy. We aimed to delineate the female and male phenotypic spectrum of NEXMIF encephalopathy. METHODS: Through an international collaboration, we analyzed the phenotypes and genotypes of 87 patients with NEXMIF encephalopathy. RESULTS: Sixty-three females and 24 males (46 new patients) with NEXMIF encephalopathy were studied, with 30 novel variants. Phenotypic features included developmental delay/ID in 86/87 (99%), seizures in 71/86 (83%) and multiple comorbidi…

research product

Am J Hum Genet

ZMIZ1 is a coactivator of several transcription factors, including p53, the androgen receptor, and NOTCH1. Here, we report 19 subjects with intellectual disability and developmental delay carrying variants in ZMIZ1. The associated features include growth failure, feeding difficulties, microcephaly, facial dysmorphism, and various other congenital malformations. Of these 19, 14 unrelated subjects carried de novo heterozygous single-nucleotide variants (SNVs) or single-base insertions/deletions, 3 siblings harbored a heterozygous single-base insertion, and 2 subjects had a balanced translocation disrupting ZMIZ1 or involving a regulatory region of ZMIZ1. In total, we identified 13 point mutat…

research product