0000000000931395

AUTHOR

Andrea Kromer

Statin-Induced Liver Injury Involves Cross-Talk between Cholesterol and Selenoprotein Biosynthetic Pathways

Statins have become the mainstay of hypercholesterolemia treatment. Despite a seemingly clear rationale behind their use, the inhibition of HMG-CoA reductase, these compounds have been shown to elicit a variety of unanticipated and elusive effects and side effects in vivo. Among the most frequently noted side effects of statin treatment are elevations in liver enzymes. Here, we report our finding that atorvastatin, cerivastatin, and lovastatin at clinically common concentrations induce a selective, differential loss of selenoprotein expression in cultured human HepG2 hepatocytes. The primarily affected selenoprotein was glutathione peroxidase (GPx), whose biosynthesis, steady-state expressi…

research product

Prooxidative toxicity and selenoprotein suppression by cerivastatin in muscle cells

Statins are the most widely used drugs for the treatment of hypercholesterolemia. In spite of their overall favorable safety profile, they do possess serious myotoxic potential, whose molecular origin has remained equivocal. Here, we demonstrate in cultivated myoblasts and skeletal muscle cells that cerivastatin at nanomolar concentrations interferes with selenoprotein synthesis and evokes a heightened vulnerability of the cells toward oxidative stressors. A correspondingly increased vulnerability was found with atorvastatin, albeit at higher concentrations than with cerivastatin. In selenium-saturated cells, cerivastatin caused a largely indiscriminate suppression of selenoprotein biosynth…

research product