0000000000936299
AUTHOR
Yuri Antonacci
Granger Causality Analysis of Transient Calcium Dynamics in the Honey Bee Antennal Lobe Network
Odorant processing presents multiple parallels across animal species, and insects became relevant models for the study of olfactory coding because of the tractability of the underlying neural circuits. Within the insect brain, odorants are received by olfactory sensory neurons and processed by the antennal lobe network. Such a network comprises multiple nodes, named glomeruli, that receive sensory information and are interconnected by local interneurons participating in shaping the neural representation of an odorant. The study of functional connectivity between the nodes of a sensory network in vivo is a challenging task that requires simultaneous recording from multiple nodes at high temp…
An Information-Theoretic Framework to Measure the Dynamic Interaction between Neural Spike Trains
Understanding the interaction patterns among simultaneous recordings of spike trains from multiple neuronal units is a key topic in neuroscience. However, an optimal approach of assessing these interactions has not been established, as existing methods either do not consider the inherent point process nature of spike trains or are based on parametric assumptions that may lead to wrong inferences if not met. This work presents a framework, grounded in the field of information dynamics, for the model-free, continuous-time estimation of both undirected (symmetric) and directed (causal) interactions between pairs of spike trains. The framework decomposes the overall information exchanged dynami…
Estimation of Granger causality through Artificial Neural Networks: applications to physiological systems and chaotic electronic oscillators
One of the most challenging problems in the study of complex dynamical systems is to find the statistical interdependencies among the system components. Granger causality (GC) represents one of the most employed approaches, based on modeling the system dynamics with a linear vector autoregressive (VAR) model and on evaluating the information flow between two processes in terms of prediction error variances. In its most advanced setting, GC analysis is performed through a state-space (SS) representation of the VAR model that allows to compute both conditional and unconditional forms of GC by solving only one regression problem. While this problem is typically solved through Ordinary Least Sq…
Spectral decomposition of cerebrovascular and cardiovascular interactions in patients prone to postural syncope and healthy controls.
We present a framework for the linear parametric analysis of pairwise interactions in bivariate time series in the time and frequency domains, which allows the evaluation of total, causal and instantaneous interactions and connects time- and frequency-domain measures. The framework is applied to physiological time series to investigate the cerebrovascular regulation from the variability of mean cerebral blood flow velocity (CBFV) and mean arterial pressure (MAP), and the cardiovascular regulation from the variability of heart period (HP) and systolic arterial pressure (SAP). We analyze time series acquired at rest and during the early and late phase of head-up tilt in subjects developing or…
A new framework for the time- and frequency-domain assessment of high-order interactions in networks of random processes
While the standard network description of complex systems is based on quantifying the link between pairs of system units, higher-order interactions (HOIs) involving three or more units often play a major role in governing the collective network behavior. This work introduces a new approach to quantify pairwise and HOIs for multivariate rhythmic processes interacting across multiple time scales. We define the so-called O-information rate (OIR) as a new metric to assess HOIs for multivariate time series, and present a framework to decompose the OIR into measures quantifying Granger-causal and instantaneous influences, as well as to expand all measures in the frequency domain. The framework ex…
Local Granger causality
Granger causality is a statistical notion of causal influence based on prediction via vector autoregression. For Gaussian variables it is equivalent to transfer entropy, an information-theoretic measure of time-directed information transfer between jointly dependent processes. We exploit such equivalence and calculate exactly the 'local Granger causality', i.e. the profile of the information transfer at each discrete time point in Gaussian processes; in this frame Granger causality is the average of its local version. Our approach offers a robust and computationally fast method to follow the information transfer along the time history of linear stochastic processes, as well as of nonlinear …
A questionnaire to measure the extra-pulmonary symptoms of asthma
Background: Research into the effects of asthma treatments on the extra-pulmonary symptoms of severe asthma is limited by the absence of a suitable questionnaire. The aim was to create a questionnaire suitable for intervention studies by selecting symptoms that are statistically associated with asthma pathology and therefore may improve when pathology is reduced. Methods: Patients attending a specialist asthma clinic completed the 65-item General Symptom Questionnaire (GSQ-65), a questionnaire validated for assessing symptoms of people with functional disorders. Lung function (FEV1%) and cumulative oral corticosteroids (OCS) calculated from maintenance dose plus exacerbations were obtained …
Measuring High-Order Interactions in Rhythmic Processes Through Multivariate Spectral Information Decomposition
Many complex systems in physics, biology and engineering are modeled as dynamical networks and described using multivariate time series analysis. Recent developments have shown that the emergent dynamics of a network system are significantly affected by interactions involving multiple network nodes which cannot be described using pairwise links. While these higher-order interactions can be probed using information-theoretic measures, a rigorous framework to describe them in the frequency domain is still lacking. This work presents an approach for the spectral decomposition of multivariate information measures, capable of identifying higher-order synergistic and redundant interactions betwee…
Multivariate correlation measures reveal structure and strength of brain–body physiological networks at rest and during mental stress
In this work, we extend to the multivariate case the classical correlation analysis used in the field of network physiology to probe dynamic interactions between organ systems in the human body. To this end, we define different correlation-based measures of the multivariate interaction (MI) within and between the brain and body subnetworks of the human physiological network, represented, respectively, by the time series of delta, theta, alpha, and beta electroencephalographic (EEG) wave amplitudes, and of heart rate, respiration amplitude, and pulse arrival time (PAT) variability. MI is computed: (i) considering all variables in the two subnetworks to evaluate overall brain–body interaction…
Information decomposition in the frequency domain: a new framework to study cardiovascular and cardiorespiratory oscillations
While cross-spectral and information-theoretic approaches are widely used for the multivariate analysis of physiological time series, their combined utilization is far less developed in the literature. This study introduces a framework for the spectral decomposition of multivariate information measures, which provides frequency-specific quantifications of the information shared between a target and two source time series and of its expansion into amounts related to how the sources contribute to the target dynamics with unique, redundant and synergistic information. The framework is illustrated in simulations of linearly interacting stochastic processes, showing how it allows us to retrieve …
Measuring the Rate of Information Transfer in Point-Process Data: Application to Cardiovascular Interactions
We present the implementation to cardiovascular variability of a method for the information-theoretic estimation of the directed interactions between event-based data. The method allows to compute the transfer entropy rate (TER) from a source to a target point process in continuous time, thus overcoming the severe limitations associated with time discretization of event-based processes. In this work, the method is evaluated on coupled cardiovascular point processes representing the heartbeat dynamics and the related peripheral pulsation, first using a physiologically-based simulation model and then studying real point-process data from healthy subjects monitored at rest and during postural …
Connectivity Analysis in EEG Data: A Tutorial Review of the State of the Art and Emerging Trends
Understanding how different areas of the human brain communicate with each other is a crucial issue in neuroscience. The concepts of structural, functional and effective connectivity have been widely exploited to describe the human connectome, consisting of brain networks, their structural connections and functional interactions. Despite high-spatial-resolution imaging techniques such as functional magnetic resonance imaging (fMRI) being widely used to map this complex network of multiple interactions, electroencephalographic (EEG) recordings claim high temporal resolution and are thus perfectly suitable to describe either spatially distributed and temporally dynamic patterns of neural acti…
Frequency Domain Information Decomposition: Application to Plateau Waves of Intracranial Pressure
The sustainment and/or resurgence of Plateau Waves (PWs) reveals a borderline cerebral situation of the pressure-volume relationship and is related to increased mortality. The intense systemic stress caused by PWs can be evidenced by the study of Heart Rate Variability (HRV), which is an indicator of the activity of the autonomic nervous system, namely the sympathetic and parasympathetic imbalance. In this work, heart and brain crosstalk interactions will be analyzed using a spectral decomposition of multivariate information measures, which provides frequency-specific quantification of the information shared between a target and two source time series. The spectral measures of information h…
Estimating brain connectivity when few data points are available: Perspectives and limitations
Methods based on the use of multivariate autoregressive modeling (MVAR) have proved to be an accurate and flexible tool for the estimation of brain functional connectivity. The multivariate approach, however, implies the use of a model whose complexity (in terms of number of parameters) increases quadratically with the number of signals included in the problem. This can often lead to an underdetermined problem and to the condition of multicollinearity. The aim of this paper is to introduce and test an approach based on Ridge Regression combined with a modified version of the statistics usually adopted for these methods, to broaden the estimation of brain connectivity to those conditions in …
Estimation of brain connectivity through Artificial Neural Networks
Among different methods available for estimating brain connectivity from electroencephalographic signals (EEG), those based on MVAR models have proved to be flexible and accurate. They rely on the solution of linear equations that can be pursued through artificial neural networks (ANNs) used as MVAR model. However, when few data samples are available, there is a lack of accuracy in estimating MVAR parameters due to the collinearity between regressors. Moreover, the assessment procedure is also affected by the lack of data points. The mathematical solution to these problems is represented by penalized regression methods based on l 1 norm, that can reduce collinearity by means of variable sel…
Analysis of Cardiac Pulse Arrival Time Series at Rest and during Physiological Stress
The study of cardiovascular dynamics is pivotal in the prevention and monitoring of cardiovascular diseases. Pulse Arrival Time (PAT) series contain information concerning not only the dynamics of the Autonomic Nervous System (ANS), but of all the systems involved in the regulation of cardiovascular homeostasis. This study aims to highlight how indexes extracted from PAT series in time-, frequency- and information-domain allow to discriminate among different physiological conditions. Analyses were carried out on 76 young healthy subjects, at rest and during orthostatic or mental stress. Our results show that PAT indexes vary according to the ANS condition, and may thus be useful parameters …
Testing different methodologies for Granger causality estimation: A simulation study
Granger causality (GC) is a method for determining whether and how two time series exert causal influences one over the other. As it is easy to implement through vector autoregressive (VAR) models and can be generalized to the multivariate case, GC has spread in many different areas of research such as neuroscience and network physiology. In its basic formulation, the computation of GC involves two different regressions, taking respectively into account the whole past history of the investigated multivariate time series (full model) and the past of all time series except the putatively causal time series (restricted model). However, the restricted model cannot be represented through a finit…
Information Transfer in Linear Multivariate Processes Assessed through Penalized Regression Techniques: Validation and Application to Physiological Networks
The framework of information dynamics allows the dissection of the information processed in a network of multiple interacting dynamical systems into meaningful elements of computation that quantify the information generated in a target system, stored in it, transferred to it from one or more source systems, and modified in a synergistic or redundant way. The concepts of information transfer and modification have been recently formulated in the context of linear parametric modeling of vector stochastic processes, linking them to the notion of Granger causality and providing efficient tools for their computation based on the state&ndash
Assessment of Cardiorespiratory Interactions During Spontaneous and Controlled Breathing: Linear Parametric Analysis
In this work, we perform a linear parametric analysis of cardiorespiratory interactions in bivariate time series of heart period (HP) and respiration (RESP) measured in 19 healthy subjects during spontaneous breathing and controlled breathing at varying breathing frequency. The analysis is carried out computing measures of the total and causal interaction between HP and RESP variability in both time and frequency domains (low- and high-frequency, LF and HF). Results highlight strong cardiorespiratory interactions in the time domain and within the HF band that are not affected by the paced breathing condition. Interactions in the LF band are weaker and prevalent along the direction from HP t…
Measuring the Rate of Information Exchange in Point-Process Data With Application to Cardiovascular Variability
The amount of information exchanged per unit of time between two dynamic processes is an important concept for the analysis of complex systems. Theoretical formulations and data-efficient estimators have been recently introduced for this quantity, known as the mutual information rate (MIR), allowing its continuous-time computation for event-based data sets measured as realizations of coupled point processes. This work presents the implementation of MIR for point process applications in Network Physiology and cardiovascular variability, which typically feature short and noisy experimental time series. We assess the bias of MIR estimated for uncoupled point processes in the frame of surrogate…
Preliminary development of a questionnaire to measure the extra-pulmonary symptoms of severe asthma
Abstract Background Research into the effects of asthma treatments on the extra-pulmonary symptoms of severe asthma is limited by the absence of a suitable questionnaire. The aim was to create a questionnaire suitable for intervention studies by selecting symptoms that are statistically associated with asthma pathology and therefore may improve when pathology is reduced. Methods Patients attending a specialist asthma clinic completed the 65-item General Symptom Questionnaire (GSQ-65), a questionnaire validated for assessing symptoms of people with multiple medically unexplained symptoms. Lung function (FEV1%) and cumulative oral corticosteroids (OCS) calculated from maintenance dose plus ex…
Additional file 1 of Preliminary development of a questionnaire to measure the extra-pulmonary symptoms of severe asthma
Additional file 1. GSQ-A.
Comparison of discretization strategies for the model-free information-theoretic assessment of short-term physiological interactions
This work presents a comparison between different approaches for the model-free estimation of information-theoretic measures of the dynamic coupling between short realizations of random processes. The measures considered are the mutual information rate (MIR) between two random processes [Formula: see text] and [Formula: see text] and the terms of its decomposition evidencing either the individual entropy rates of [Formula: see text] and [Formula: see text] and their joint entropy rate, or the transfer entropies from [Formula: see text] to [Formula: see text] and from [Formula: see text] to [Formula: see text] and the instantaneous information shared by [Formula: see text] and [Formula: see…
Quantifying High-Order Interactions in Cardiovascular and Cerebrovascular Networks
We present a method to analyze the dynamics of physiological networks beyond the framework of pairwise interactions. Our method defines the so-called O-information rate (OIR) as a measure of the higher-order interaction among several physiological variables. The OIR measure is computed from the vector autoregressive representation of multiple time series, and is applied to the network formed by heart period, systolic and diastolic arterial pressure, respiration and cerebral blood flow variability series measured in healthy subjects at rest and after head-up tilt. Our results document that cardiovascular, cerebrovascular and respiratory interactions are highly redundant, and that redundancy …
Measuring the agreement between brain connectivity networks.
Investigating the level of similarity between two brain networks, resulting from measures of effective connectivity in the brain, can be of interest from many respects. In this study, we propose and test the idea to borrow measures of association used in machine learning to provide a measure of similarity between the structure of (un-weighted) brain connectivity networks. The measures here explored are the accuracy, Cohen's Kappa (K) and Area Under Curve (AUC). We implemented two simulation studies, reproducing two contexts of application that can be particularly interesting for practical applications, namely: i) in methodological studies, performed on surrogate data, aiming at comparing th…
Single-trial Connectivity Estimation through the Least Absolute Shrinkage and Selection Operator.
Methods based on the use of multivariate autoregressive models (MVAR) have proved to be an accurate tool for the estimation of functional links between the activity originated in different brain regions. A well-established method for the parameters estimation is the Ordinary Least Square (OLS) approach, followed by an assessment procedure that can be performed by means of Asymptotic Statistic (AS). However, the performances of both procedures are strongly influenced by the number of data samples available, thus limiting the conditions in which brain connectivity can be estimated. The aim of this paper is to introduce and test a regression method based on Least Absolute Shrinkage and Selecti…
Information Dynamics Analysis: A new approach based on Sparse Identification of Linear Parametric Models*
The framework of information dynamics allows to quantify different aspects of the statistical structure of multivariate processes reflecting the temporal dynamics of a complex network. The information transfer from one process to another can be quantified through Transfer Entropy, and under the assumption of joint Gaussian variables it is strictly related to the concept of Granger Causality (GC). According to the most recent developments in the field, the computation of GC entails representing the processes through a Vector Autoregressive (VAR) model and a state space (SS) model typically identified by means of the Ordinary Least Squares (OLS). In this work, we propose a new identification …
A new Framework for the Spectral Information Decomposition of Multivariate Gaussian Processes
: Different information-theoretic measures are available in the literature for the study of pairwise and higher-order interactions in multivariate dynamical systems. While these measures operate in the time domain, several physiological and non-physiological systems exhibit a rich oscillatory content that is typically analyzed in the frequency domain through spectral and cross-spectral approaches. For Gaussian systems, the relation between information and spectral measures has been established considering coupling and causality measures, but not for higher-order interactions. To fill this gap, in this work we introduce an information-theoretic framework in the frequency domain to quantify t…
Model-Based Transfer Entropy Analysis of Brain-Body Interactions with Penalized regression techniques
The human body can be seen as a functional network depicting the dynamical interactions between different organ systems. This exchange of information is often evaluated with information-theoretic approaches which comprise the use of vector autoregressive (VAR) and state space (SS) models, normally identified with the Ordinary Least Squares (OLS). However, the number of time series to be included in the model is strictly related to the length of data recorded thus limiting the use of the classical approach. In this work, a new method based on penalized regressions, the so-called LASSO, was compared with OLS on physiological time-series extracted from 18 subjects during different stress condi…