0000000000936603

AUTHOR

Yu. N. Novikov

Hunt for θ13with LENA

In a hunt for by far missing neutrino mixing angle ?13 the accelerator experiments have recently indicated non-zero value and the dedicated reactor neutrino experiments are moving towards the data-taking phase to confirm that. The small effect of ?13 to the neutrino oscillation probabilities can be also complementarily probed using artificially made source of mono-chromatic neutrinos with low energies originated from electron capture processes. Due to the small energy of neutrino and tiny interaction cross section, and the expected scale of ?13 support the use of large liquid scintillation detector. In this work, the estimated sensitivities for measurement of mixing angle ?13 is presented i…

research product

Precision experiments with time-resolved Schottky mass spectrometry

Abstract A large area on the mass surface of neutron-deficient nuclides (36≤Z≤85) was measured with time-resolved Schottky mass spectrometry at the FRS-ESR facilities. The masses of 114 nuclides were obtained for the first time from which 43 were determined via known decay energies. The improved mass accuracy of 30 keV allowed to study the isospin dependence of nuclear pairing, to precisely locate the one-proton dripline for odd-Z isotopes from Tb to Pa and to make crucial tests of the predictive powers of modern mass models.

research product

Direct determination of the excitation energy of the quasistable isomer 180mTa

180mTa is a naturally abundant quasistable nuclide and the longest-lived nuclear isomer known to date. It is of interest, among others, for the search for dark matter, for the development of a γ laser, and for astrophysics. So far, its excitation energy has not been measured directly but has been based on an evaluation of available nuclear reaction data. We have determined the excitation energy of this isomer with high accuracy using the Penning-trap mass spectrometer JYFLTRAP. The determined mass difference between the ground and isomeric states of 180Ta yields an excitation energy of 76.79(55) keV for 180mTa. This is the first direct measurement of the excitation energy and provides a bet…

research product

Penning traps as a versatile tool for precise experiments in fundamental physics

This review article describes the trapping of charged particles. The main principles of electromagnetic confinement of various species from elementary particles to heavy atoms are briefly described. The preparation and manipulation with trapped single particles, as well as methods of frequency measurements, providing unprecedented precision, are discussed. Unique applications of Penning traps in fundamental physics are presented. Ultra-precise trap-measurements of masses and magnetic moments of elementary particles (electrons, positrons, protons and antiprotons) confirm CPT-conservation, and allow accurate determination of the fine-structure constant alpha and other fundamental constants. T…

research product

Omnibus experiment: CPT and CP violation with sterile neutrinos

We propose to probe both the CPT and CP violation together with the search for sterile neutrinos in one do-it-all experiment. This omnibus experiment would utilize neutrino oscillometry with large scintillator detectors like LENA, JUNO or RENO-50 and manmade radioactive sources similar to the ones used by the GALLEX experiment. Our calculations indicate that such an experiment is realistic and could be performed in parallel to the main research plan for JUNO, LENA, or RENO-50. Assuming as the starting point the values of the oscillation parameters indicated by the current global fit (in 3 active + 1 sterile scenario) and requiring at least 5 sigma confidence level, we estimate that with the…

research product

Recent developments for high-precision mass measurements of the heaviest elements at SHIPTRAP

Abstract Atomic nuclei far from stability continue to challenge our understanding. For example, theoretical models have predicted an “island of stability” in the region of the superheavy elements due to the closure of spherical proton and neutron shells. Depending on the model, these are expected at Z = 114, 120 or even 126 and N = 172 or 184. Valuable information on the road to the island of stability is derived from high-precision mass measurements, which give direct access to binding energies of short-lived trans-uranium nuclei. Recently, direct mass measurements at SHIPTRAP have been extended to nobelium and lawrencium isotopes around the deformed shell gap N = 152. In order to further …

research product

Mass measurement of cooled neutron-deficient bismuth projectile fragments with time-resolved Schottky mass spectrometry at the FRS-ESR facility

Masses of 582 neutron-deficient nuclides ($30\leq{Z}\leq{85}$) were measured with time-resolved Schottky mass spectrometry at the FRS-ESR facility at GSI, 117 were used for calibration. The masses of 71 nuclides were obtained for the first time. A typical mass accuracy of 30 $\mu$u was achieved. These data have entered the latest atomic mass evaluation. The mass determination of about 140 additional nuclides was possible via known energies ($Q$-values) of $\alpha-$, $\beta-$, or proton decays. The obtained results are compared with the results of other measurements.

research product

High-precision measurement of the mass difference between 102Pd and 102Ru

Abstract The Q-value for the neutrinoless double electron capture on 102Pd, Qϵϵ(102Pd), is determined as the atomic mass difference between 102Pd and 102Ru. A precise measurement of the Qϵϵ(102Pd) at the SHIPTRAP Penning trap showed a more than 10σ deviation to the adopted Atomic Mass Evaluation (AME) value. The reliability of the SHIPTRAP measurement was challenged because the AME value was based on numerous experiments including β and electron capture decays and very precise (n, γ) data, all agreeing with each other. To solve the discrepancy, the Qϵϵ(102Pd) has now been determined with the JYFLTRAP Penning trap at the IGISOL facility in the Accelerator Laboratory of the University of Jyva…

research product

The decay energy of the pure s-process nuclide ¹²³ Te

Physics letters / B 758, 407 - 411 (2016). doi:10.1016/j.physletb.2016.04.059

research product

The mass-hierarchy and CP-violation discovery reach of the LBNO long-baseline neutrino experiment.

The next generation neutrino observatory proposed by the LBNO collaboration will address fundamental questions in particle and astroparticle physics. The experiment consists of a far detector, in its first stage a 20 kt LAr double phase TPC and a magnetised iron calorimeter, situated at 2300 km from CERN and a near detector based on a high-pressure argon gas TPC. The long baseline provides a unique opportunity to study neutrino flavour oscillations over their 1st and 2nd oscillation maxima exploring the $L/E$ behaviour, and distinguishing effects arising from $\delta_{CP}$ and matter. In this paper we have reevaluated the physics potential of this setup for determining the mass hierarchy (M…

research product

Double-βtransformations in isobaric triplets with mass numbersA=124, 130, and 136

The Q values of double-electron capture in ${}^{124}$Xe, ${}^{130}$Ba, and ${}^{136}$Ce and double-beta decay of ${}^{124}$Sn and ${}^{130}$Te have been determined with the Penning-trap mass spectrometer SHIPTRAP with a few hundred eV uncertainty. These nuclides are members of three isobaric triplets with common daughter nuclides. The main goal of this work was to investigate the existence of the resonant enhancement of the neutrinoless double-electron-capture rates in ${}^{124}$Xe and ${}^{130}$Ba in order to assess their suitability for the search for neutrinoless double-electron capture. Based on our results, in neither of these cases is the resonance condition fulfilled.

research product

Observation of a dramatic hindrance of the nuclear decay of isomeric states for fully ionized atoms

Abstract The half-lives of isomeric states of fully ionized 144Tb, 149Dy and 151Er have been measured. These nuclides were produced via fragmentation of about 900 MeV/u 209Bi projectiles, separated in flight with the fragment separator (FRS) and stored in the cooler ring (ESR). The decay times of the cooled fragments have been measured with time-resolved Schottky spectrometry. We observed for the first time drastic increases of the half-lives of bare isomers by factors of up to 30 compared to their neutral counterparts. This is due to the exclusion of the strong internal conversion and electron-capture channels in the radioactive decay of these bare nuclei. The experimental results are in g…

research product

A search for neutrino–antineutrino mass inequality by means of sterile neutrino oscillometry

The investigation of the oscillation pattern induced by the sterile neutrinos might determine the oscillation parameters, and at the same time, allow to probe CPT symmetry in the leptonic sector through neutrino-antineutrino mass inequality. We propose to use a large scintillation detector like JUNO or LENA to detect electron neutrinos and electron antineutrinos from MCi electron capture or beta decay sources. Our calculations indicate that such an experiment is realistic and could be performed in parallel to the current research plans for JUNO and RENO. Requiring at least 5$\sigma$ confidence level and assuming the values of the oscillation parameters indicated by the current global fit, w…

research product

Studying exotic nuclides close to the N = Z line at the HIGISOL facility

The ion guide [1, 2] for heavy-ion fusion-evaporation reactions (HIGISOL) which was developed by Beraud et al. [3] has been implemented at the IGISOL facility in Jyvaskyla [4]. This system was modified over the past 5 years. Figure 1 shows the present set-up. The HIGISOL takes advantage of the different angular distributions of primary beam and reaction products: the primary beam is stopped in front of the stopping chamber and the reaction products enter the stopping chamber through a thin foil passing the beam stop. This so called “shadow” method removes the plasma effect since the primary beam is not ionising the stopping gas. In order to improve ion optical properties, mainly to reduce t…

research product

Resonant enhancement of neutrinoless double-electron capture in 152Gd.

In the search for the nuclide with the largest probability for neutrinoless double-electron capture, we have determined the ${Q}_{ϵϵ}$ value between the ground states of $^{152}\mathrm{Gd}$ and $^{152}\mathrm{Sm}$ by Penning-trap mass-ratio measurements. The new ${Q}_{ϵϵ}$ value of 55.70(18) keV results in a half-life of ${10}^{26}\text{ }\text{ }\mathrm{yr}$ for a 1 eV neutrino mass. With this smallest half-life among known $0\ensuremath{\nu}ϵϵ$ transitions, $^{152}\mathrm{Gd}$ is a promising candidate for the search for neutrinoless double-electron capture.

research product

Beta-decay half-lives of $^{70}$Kr and $^{74}$Rb

Abstract Beta-decay half-lives of two nuclei close to N = Z line, 70 Kr and 74 Rb, have been measured at the ISOLDE mass-separator facility at CERN. Importance of these half-lives on two ingredients explaining existence and development of the Universe, the astrophysical nucleosynthesis and the Standard Model, are discussed.

research product

First isochronous mass spectrometry at the experimental storage ring ESR

Short-lived exotic nuclei can be produced and separated with the high-energy secondary nuclear beam facility FRS at GSI. These nuclides can be injected and stored in the storage ring ESR. The lower lifetime limit of the presently existing methods for mass measurements on these nuclides at the ESR is about a few seconds. We have developed and investigated an isochronous operational mode of the ESR, that makes mass measurements of nuclides with lifetimes down to a few ls feasible. It has been commissioned in experiments using long-lived nuclides with known masses. A mass resolving power of about 150 000 has been achieved in a "rst pilot experiment. A suitable detector system has been implemen…

research product

Omnibus experiment: CPT and CP violation with sterile neutrinos

The verification of the sterile neutrino hypothesis and, if confirmed, the determination of the relevant oscillation parameters is one of the goals of the neutrino physics in near future. We propose to search for the sterile neutrinos with a high statistics measurement utilizing the radioactive sources and oscillometric approach with large liquid scintillator detector like LENA, JUNO, or RENO-50. Our calculations indicate that such an experiment is realistic and could be performed in parallel to the main research plan for JUNO, LENA, or RENO-50. Assuming as the starting point the values of the oscillation parameters indicated by the current global fit (in 3 + 1 scenario) and requiring at le…

research product

Phase-Imaging Ion-Cyclotron-Resonance Measurements for Short-Lived Nuclides

A novel approach based on the projection of the Penning-trap ion motion onto a position-sensitive detector opens the door to very accurate mass measurements on the ppb level even for short-lived nuclides with half-lives well below a second. In addition to the accuracy boost, the new method provides a superior resolving power by which low-lying isomeric states with excitation energy on the 10-keV level can be easily separated from the ground state. A measurement of the mass difference of ^{130}Xe and ^{129}Xe has demonstrated the great potential of the new approach.

research product

β-decay half-life of70Kr: A bridge nuclide for therpprocess beyondA=70

The -decay half-life of 70 Kr has been measured for the first time at the ISOLDE PSB Facility at CERN. Mass separated 70 Kr ions were produced by 1 GeV proton induced spallation reactions in a Nb foil. The measured half-life is 57(21) ms. This value is consistent with the half-life calculated assuming a pure Fermi decay, but is clearly lower than the value used in a recent rp-process reaction flow calculation. The result shows that the reaction flow via two-proton-capture of 68 Se is 2.5 times faster than previously calculated assuming an astrophysical temperature of 1.5 GK and a density of 10 6 g/cm 3 .

research product

Mass Measurements and Implications for the Energy of the High-Spin Isomer inAg94

Nuclides in the vicinity of {sup 94}Ag have been studied with the Penning trap mass spectrometer JYFLTRAP at the Ion-Guide Isotope Separator On-Line. The masses of the two-proton-decay daughter {sup 92}Rh and the beta-decay daughter {sup 94}Pd of the high-spin isomer in {sup 94}Ag have been measured, and the masses of {sup 93}Pd and {sup 94}Ag have been deduced. When combined with the data from the one-proton- or two-proton-decay experiments, the results lead to contradictory mass excess values for the high-spin isomer in {sup 94}Ag, -46 370(170) or -44 970(100) keV, corresponding to excitation energies of 6960(400) or 8360(370) keV, respectively.

research product

Neutrinoless Double-Electron Capture

Double-beta processes play a key role in the exploration of neutrino and weak interaction properties, and in the searches for effects beyond the Standard Model. During the last half century many attempts were undertaken to search for double-beta decay with emission of two electrons, especially for its neutrinoless mode ($0\nu2\beta^-$), the latter being still not observed. Double-electron capture (2EC) was not in focus so far because of its in general lower transition probability. However, the rate of neutrinoless double-electron capture ($0\nu2$EC) can experience a resonance enhancement by many orders of magnitude in case the initial and final states are energetically degenerate. In the re…

research product

Simultaneous Measurement ofβ−Decay to Bound and Continuum Electron States

We report the first measurement of a ratio {lambda}{sub {beta}{sub b}}/{lambda}{sub {beta}{sub c}} of bound-state ({lambda}{sub {beta}{sub b}}) and continuum-state ({lambda}{sub {beta}{sub c}}) {beta}{sup -}-decay rates for the case of bare {sup 207}Tl{sup 81+} ions. These ions were produced at the GSI fragment separator FRS by projectile fragmentation of a {sup 208}Pb beam. After in-flight separation with the B{rho}-{delta}E-B{rho} method, they were injected into the experimental storage-ring ESR at an energy of 400.5A MeV, stored, and electron cooled. The number of both the {sup 207}Tl{sup 81+} ions and their bound-state {beta}{sup -}-decay daughters, hydrogenlike {sup 207}Pb{sup 81+} ion…

research product

Direct Measurement of the Mass Difference ofHo163andDy163Solves theQ-Value Puzzle for the Neutrino Mass Determination

The atomic mass difference of (163)Ho and (163)Dy has been directly measured with the Penning-trap mass spectrometer SHIPTRAP applying the novel phase-imaging ion-cyclotron-resonance technique. Our measurement has solved the long-standing problem of large discrepancies in the Q value of the electron capture in (163)Ho determined by different techniques. Our measured mass difference shifts the current Q value of 2555(16) eV evaluated in the Atomic Mass Evaluation 2012 [G. Audi et al., Chin. Phys. C 36, 1157 (2012)] by more than 7σ to 2833(30(stat))(15(sys)) eV/c(2). With the new mass difference it will be possible, e.g., to reach in the first phase of the ECHo experiment a statistical sensit…

research product

New results with stored exotic nuclei at relativistic energies

Recently, much progress has been made with stored exotic nuclei at relativistic velocities ( v c = 0.7 ) . Fragments of 208Pb and 209Bi projectiles and fission products from 238U ions were produced, separated in flight with the fragment separator FRS, and injected into the storage-cooler ring ESR for precision measurements. 114 new masses of neutron-deficient isotopes in the lead region have been measured with time-resolved Schottky Mass Spectrometry (SMS). A new isospin dependence of the pairing energy was observed due to the improved mass accuracy of typically 1.5×10-7 (30 keV). New masses of short-lived neutron-rich fission fragments have been obtained with Isochronous Mass Spectrometry …

research product

Mass measurements and implications for the energy of the high-spin isomer in 94Ag.

Nuclides in the vicinity of 94Ag have been studied with the Penning trap mass spectrometer JYFLTRAP at the Ion-Guide Separator On-Line. The masses of the two-proton-decay daughter 92Rh and the beta-decay daughter 94Pd of the high-spin isomer in 94Ag have been measured, and the masses of 93Pd and 94Ag have been deduced. When combined with the data from the one-proton or two-proton-decay experiments, the results lead to contradictory mass excess values for the high-spin isomer in 94Ag, -46370(170) or -44970(100) keV, corresponding to excitation energies of 6960(400) or 8360(370) keV, respectively.

research product

Study of Basic Nuclear Properties of Highly-Charged, Unstable Nuclei at the SIS-FRS-ESR Complex

Recent progress in experiments with exotic nuclear beams at the SIS-FRS-ESR facility is summarized. New results on gross properties of exotic nuclei like binding energy, half-lives, and decay modes are presented. A brief outlook to future experiments is given.

research product

Recent Upgrades of the SHIPTRAP Setup: On the Finish Line Towards Direct Mass Spectroscopy of Superheavy Elements

With the Penning-trap mass spectrometer SHIPTRAP at GSI, Darmstadt, it is possible to investigate exotic nuclei in the region of the heaviest elements. Few years ago, challenging experiments led to the direct measurements of the masses of neutron-deficient isotopes with Z = 102,103 around N = 152. Thanks to recent advances in cooling and ion-manipulation techniques, a major technical upgrade of the setup has been recently accomplished to boost its efficiency. At present, the gap to reach more rare and shorter-lived species at the limits of the nuclear landscape has been narrowed. ispartof: pages:423-429 ispartof: Acta Physica Polonica B vol:48 issue:3 pages:423-429 ispartof: location:Zakopa…

research product

Mass mapping of a new area of neutron-deficient suburanium nuclides

Abstract The masses of 64 short-lived neutron-deficient nuclides covering the element range from tungsten to uranium have been obtained for the first time. They have been evaluated by combining directly measured masses from Schottky mass spectrometry with linked experimental Q-values in α-decay chains. Based on these new mass data we have determined the one-proton and two-proton drip-lines as well as the size of the “littoral shallow” of the sea of instability. No evidence of a Thomas–Ehrman shift has been found in the region of the investigated heavy nuclides. A peculiar behavior of two-proton separation energies has been observed in the lead region. The predictive power of various mass mo…

research product

Direct determination of the excitation energy of the quasistable isomer Ta180m

International audience; Ta180m is a naturally abundant quasistable nuclide and the longest-lived nuclear isomer known to date. It is of interest, among others, for the search for dark matter, for the development of a γ laser, and for astrophysics. So far, its excitation energy has not been measured directly but has been based on an evaluation of available nuclear reaction data. We have determined the excitation energy of this isomer with high accuracy using the Penning-trap mass spectrometer JYFLTRAP. The determined mass difference between the ground and isomeric states of Ta180 yields an excitation energy of 76.79(55) keV for Ta180m. This is the first direct measurement of the excitation e…

research product

Extending Penning trap mass measurements with SHIPTRAP to the heaviest elements

Penning-trap mass spectrometry of radionuclides provides accurate mass values and absolute binding energies. Such mass measurements are sensitive indicators of the nuclear structure evolution far away from stability. Recently, direct mass measurements have been extended to the heavy elements nobelium (Z=102) and lawrencium (Z=103) with the Penning-trap mass spectrometer SHIPTRAP. The results probe nuclear shell effects at N=152. New developments will pave the way to access even heavier nuclides.

research product

Isomeric state of 80Y and its role in the rp-process

The HIGISOL facility has been used to investigate carefully the isomeric transition 228.5 keV in 80Y. We have measured the electron internal conversion coefficient for this transition αK = 0.50 ± 0.07 which gives the value for half-life of “bare” isomeric state T 1/2 = 6.8 ± 0.5 s. The isomeric state should play an important role in the rp-process calculations.

research product

Direct Mapping of Nuclear Shell Effects in the Heaviest Elements

Quantum-mechanical shell effects are expected to strongly enhance nuclear binding on an "island of stability" of superheavy elements. The predicted center at proton number $Z=114,120$, or $126$ and neutron number $N=184$ has been substantiated by the recent synthesis of new elements up to $Z=118$. However the location of the center and the extension of the island of stability remain vague. High-precision mass spectrometry allows the direct measurement of nuclear binding energies and thus the determination of the strength of shell effects. Here, we present such measurements for nobelium and lawrencium isotopes, which also pin down the deformed shell gap at $N=152$.

research product

Neutrino oscillometry at the next generation neutrino observatory

The large next generation liquid-scintillator detector LENA (Low Energy Neutrino Astronomy) offers an excellent opportunity for neutrino oscillometry. The characteristic spatial pattern of very low monoenergetic neutrino disappearance from artificial radioactive sources can be detected within the long length of detector. Sufficiently strong sources of more than 1 MCi activity can be produced at nuclear reactors. Oscillometry will provide a unique tool for precise determination of the mixing parameters for both active and sterile neutrinos within the broad mass region 0.01 - 2 (eV)^2. LENA can be considered as a versatile tool for a careful investigation of neutrino oscillations.

research product

Experiments with stored exotic nuclei at relativistic energies

Abstract A review and recent progress are presented from experiments on masses and lifetimes of bare and few-electron exotic nuclei at GSI. Relativistic rare isotopes produced via projectile fragmentation and fission were separated in flight by the fragment separator FRS and injected into the storage ring ESR. This worldwide unique experimental method gives access to all fragments with half-lives down to the microsecond range. The great research potential is demonstrated by the discovery of new isotopes along with simultaneous mass and lifetime measurements. Single particle decay measurements and the continuous recording of both stored mother and daughter nuclei open up a new era for nuclea…

research product

A White Paper on keV sterile neutrino Dark Matter

We present a comprehensive review of keV-scale sterile neutrino Dark Matter, collecting views and insights from all disciplines involved - cosmology, astrophysics, nuclear, and particle physics - in each case viewed from both theoretical and experimental/observational perspectives. After reviewing the role of active neutrinos in particle physics, astrophysics, and cosmology, we focus on sterile neutrinos in the context of the Dark Matter puzzle. Here, we first review the physics motivation for sterile neutrino Dark Matter, based on challenges and tensions in purely cold Dark Matter scenarios. We then round out the discussion by critically summarizing all known constraints on sterile neutrin…

research product

Isomeric state of $^{80}$Y and its role in the astrophysical rp-process

5 pages, 7 figures.-- PACS nrs: 21.10.Tg; 23.20.Nx; 27.50.+e.

research product

Schottky mass measurements of stored and cooled neutron-deficient projectile fragments in the element range of 57≤Z≤84

Abstract A novel method for direct, high precision mass measurements of relativistic exotic nuclei has been successfully applied in the storage ring ESR at GSI. The nuclei of interest were produced by projectile fragmentation of 930 MeV / u bismuth ions, separated in-flight by the fragment separator FRS, stored and cooled in the ESR. The mass values have been deduced from the revolution frequencies of the coasting cooled ions. We have measured 104 new mass values with a precision of about 100 keV and a resolving power of 3.5×10 5 for the neutron-deficient isotopes of the elements 57≤Z≤84 . This paper presents the experimental method, the mass evaluation and a table of the experimental mass …

research product