The photophysics of distorted nanographenes: Ultra-slow relaxation dynamics, memory effects, and delayed fluorescence
The controlled deformation and engineering of the sp2 carbon network in atomically-precise nanographenes, and their substantially larger size as compared to typical optical dyes, opens new opportunities for the modulation of optical and electronic properties, but the peculiar photophysics of these systems is still poorly understood. Here, through a detailed comparative study of two well-defined distorted nanographenes, we show that they can exhibit interesting photophysical features, such as triplet-triplet annihilation delayed fluorescence, ultra-slow excited state dynamics, and excitation-wavelength memory effects on the nanosecond and sub-nanosecond relaxation cascades. Some of these beh…