0000000000937455
AUTHOR
Alain Benoit
Precise measurement of $2\nu\beta\beta$ decay of $^{100}$Mo with the CUPID-Mo detection technology
We report the measurement of the two-neutrino double-beta ($2\nu\beta\beta$) decay of $^{100}$Mo to the ground state of $^{100}$Ru using lithium molybdate (\crystal) scintillating bolometers. The detectors were developed for the CUPID-Mo program and operated at the EDELWEISS-III low background facility in the Modane underground laboratory. From a total exposure of $42.235$ kg$\times$d, the half-life of $^{100}$Mo is determined to be $T_{1/2}^{2\nu}=[7.12^{+0.18}_{-0.14}\,\mathrm{(stat.)}\pm0.10\,\mathrm{(syst.)}]\times10^{18}$ years. This is the most accurate determination of the $2\nu\beta\beta$ half-life of $^{100}$Mo to date. We also confirm, with the statistical significance of $>3\sigm…
Status of the EDELWEISS experiment
The Edelweiss Dark Matter Experiment is installed in the Modane Underground Laboratory since 1994. In 1997 the first detector of a 70 g heat and ionization Ge low-temperature detector built by the collaboration showed its discrimination capabilities. During the last two years the installation was upgraded, and a new generation of 70 g Ge detectors is operational. The detector environment is drastically controlled to avoid radioactive contamination. A test run with two new 70 g detectors shows a reduction by a factor of ten in the background level before 7-ray rejection which is now around 2 events/kg/keV/day. Three 320 g Ge cryogenic detectors have been constructed and are now being tested …