0000000000940181
AUTHOR
Ricardo Barandela
Some Experiments in Supervised Pattern Recognition with Incomplete Training Samples
This paper presents some ideas about automatic procedures to implement a system with the capability of detecting patterns arising from classes not represented in the training sample. The procedure aims at incorporating automatically to the training sample the necessary information about the new class for correctly recognizing patterns from this class in future classification tasks. The Nearest Neighbor rule is employed as the central classifier and several techniques are added to cope with the peril of incorporating noisy data to the training sample. Experimental results with real data confirm the benefits of the proposed procedure.
Restricted Decontamination for the Imbalanced Training Sample Problem
The problem of imbalanced training data in supervised methods is currently receiving growing attention. Imbalanced data means that one class is much more represented than the others in the training sample. It has been observed that this situation, which arises in several practical domains, may produce an important deterioration of the classification accuracy, in particular with patterns belonging to the less represented classes. In the present paper, we report experimental results that point at the convenience of correctly downsizing the majority class while simultaneously increasing the size of the minority one in order to balance both classes. This is obtained by applying a modification o…