0000000000942846

AUTHOR

Konasale J. Anilkumar

showing 2 related works from this author

Association of Cry1Ac toxin resistance in Helicoverpa zea (Boddie) with increased alkaline phosphatase levels in the midgut lumen.

2012

ABSTRACT Resistance to Bacillus thuringiensis Cry1Ac toxin was characterized in a population of Helicoverpa zea larvae previously shown not to have an alteration in toxin binding as the primary resistance mechanism to this toxin. Cry1Ac-selected larvae (AR1) were resistant to protoxins and toxins of Cry1Ab, Cry1Ac, and the corresponding modified proteins lacking helix α-1 (Cry1AbMod and Cry1AcMod). When comparing brush border membrane vesicles (BBMVs) prepared from susceptible (LC) and AR1 larval midguts, there were only negligible differences in overall Cry1Ac toxin binding, though AR1 had 18% reversible binding, in contrast to LC, in which all binding was irreversible. However, no differe…

Brush borderPopulationBacterial Proteinmedicine.disease_causeApplied Microbiology and BiotechnologyHemolysin ProteinsEndotoxinBacterial ProteinsBacillus thuringiensismedicineInvertebrate MicrobiologyAnimalseducationeducation.field_of_studybiologyEcologyBacillus thuringiensis ToxinsToxinAnimalfungiMidgutHemolysin ProteinLigand (biochemistry)biology.organism_classificationAlkaline PhosphataseEndotoxinsGastrointestinal TractLepidopteraBiochemistryLarvaAlkaline phosphataseHelicoverpa zeaFood ScienceBiotechnologyProtein BindingApplied and environmental microbiology
researchProduct

Production and characterization of Bacillus thuringiensis Cry1Ac-resistant cotton bollworm Helicoverpa zea (Boddie).

2007

ABSTRACT Laboratory-selected Bacillus thuringiensis -resistant colonies are important tools for elucidating B. thuringiensis resistance mechanisms. However, cotton bollworm, Helicoverpa zea , a target pest of transgenic corn and cotton expressing B. thuringiensis Cry1Ac (Bt corn and cotton), has proven difficult to select for stable resistance. Two populations of H. zea (AR and MR), resistant to the B. thuringiensis protein found in all commercial Bt cotton varieties (Cry1Ac), were established by selection with Cry1Ac activated toxin (AR) or MVP II (MR). Cry1Ac toxin reflects the form ingested by H. zea when feeding on Bt cotton, whereas MVP II is a Cry1Ac formulation used for resistance se…

Bacterial ToxinsBacillus thuringiensisMothsGossypiumApplied Microbiology and BiotechnologyCypermethrinInsecticide Resistancechemistry.chemical_compoundHemolysin ProteinsBacterial ProteinsBacillus thuringiensisInvertebrate MicrobiologyAnimalsPest Control BiologicalGossypiumGenetically modified maizeEcologybiologyBacillus thuringiensis Toxinsfungifood and beveragesbiology.organism_classificationPlants Genetically ModifiedEndotoxinsHorticulturechemistryAgronomyCry1AcBt cottonHelicoverpa zeaPEST analysisFood ScienceBiotechnologyProtein BindingApplied and environmental microbiology
researchProduct