0000000000946961
AUTHOR
M. J. Taylor
Lifetime measurement of the first excited 2+ state in 112Te
The lifetime of the 2+ → 0+ g.s. transition in the neutron-deficicient nucleus 112Te has been measured for the first time using the DPUNS plunger and the recoil distance Doppler shift technique. The deduced value for the reduced transition probability is B(E2 :0+ g.s. → 2+) = 0.46 ± 0.04 e2b2, indicating that there is no unexpected enhancement of the B(E2 :0+ g.s. → 2+) values in Te isotopes below the midshell. The result is compared to and discussed in the framework of large-scale shell-model calculations. peerReviewed
Identification of the Jπ = 1− state in 218Ra populated via α decay of 222Th
The α decay of 222Th populating the low-lying J π = 3− state, and also a proposed 1− state, in 218Ra has been observed. The observations suggest an excitation energy of 853 keV for the 1− state, which is 60 keV above the 3− state. The hindrance factors of these α decays give a possible boundary to the region of ground-state octupole deformation in the light-actinide nuclei. The relative positions of the J π = 1− and 3− states suggest they are produced by an octupole-vibrational mechanism, as opposed to α clustering or rotations of a reflection-asymmetric octupole-deformed shape. peerReviewed
Reduced transition probabilities along the yrast line in 166W
Lifetimes of excited states in the yrast band of the neutron-deficient nuclide 166W have been measured utilizing the DPUNS plunger device at the target position of the JUROGAM II γ -ray spectrometer in conjunction with the RITU gas-filled separator and the GREAT focal-plane spectrometer. Excited states in 166W were populated in the 92Mo(78Kr,4p) reaction at a bombarding energy of 380 MeV. The measurements reveal a low value for the ratio of reduced transitions probabilities for the lowest-lying transitions B(E2; 4+ → 2+)/B(E2; 2+ → 0+) = 0.33(5), compared with the expected ratio for an axially deformed rotor (B4/2 = 1.43). peerReviewed
Identification of a dipole band above the Iπ = 31/2- isomeric state in 189Pb
A dipole band of six transitions built upon a firmly established I π = 31/2− isomeric state has been identified in 189Pb using recoil-isomer tagging. This is the lightest odd-mass Pb nucleus in which a dipole band is known. The dipole nature of the new transitions has been confirmed through angular-intensity arguments. The evolution of the excitation energy and the aligned-angular momentum of the states in the new dipole band are compared with those of dipole bands in heavier, odd-mass lead isotopes. This comparison suggests that the new band in 189Pb is based upon a π[s−2 1/2h9/2i13/2]11− ⊗ ν[i −1 13/2+ ]13/2+ configuration. However, the increased aligned-angular momentum in 189Pb may sugg…
Direct observation of the Ba 114 → Xe 110 → Te 106 → Sn 102 triple α -decay chain using position and time correlations
The triple α-decay chain 114Ba → 110Xe → 106Te → 102Sn has been directly observed for the first time, following the 58Ni(58Ni ,2n) reaction. Implantation of 114Ba nuclei into a double-sided silicon-strip detector has allowed their α decays to be correlated in position and time with the α decays of the daughter (110Xe) and granddaughter (106Te) nuclei. In total, 17 events have been assigned to the 114Ba → 110Xe → 106Te → 102Sn triple α-decay chain. The energy of the 114Ba α decay has been measured to be Eα = 3480(20) keV, which is 70 keV higher than the previously measured value, and the half-life of 114Ba has been measured with improved accuracy, to be 380+190 −110 ms. A revised Q12C value …
Lifetime measurements of lowest states in the π g7/2 ⊗ νh11/2 rotational band in 112I
A differential-plunger device was used to measure the lifetimes of the lowest states in the πg7/2 ⊗ νh11/2 rotational band in doubly odd 112I with the 58Ni(58Ni, 3pn) reaction. A differential decay curve method was performed using the fully shifted and degraded γ -ray intensity measurements as a function of target-to-degrader distance. The lifetimes of the lowest three states in the πg7/2 ⊗ νh11/2 band in 112I were measured to be 124(30), 130(25), and 6.5(5) ps, respectively. As the lifetimes of successive excited states in a rotational band are expected to decrease with increasing excitation energy, these measurements suggest that the order of the transitions in the established band in 112…
Deformation of the proton emitter 113Cs from electromagnetic transition and proton-emission rates
The lifetime of the (11/2+) state in the band above the proton-emitting (3/2+) state in 113Cs has been measured to be τ = 24(6) ps from a recoil-decay-tagged differential-plunger experiment. The measured lifetime was used to deduce the deformation of the states using wave functions from a nonadiabatic quasiparticle model to independently calculate both proton-emission and electromagnetic γ -ray transition rates as a function of deformation. The only quadrupole deformation, which was able to reproduce the experimental excitation energies of the states, the electromagnetic decay rate of the (11/2+) state and the proton-emission rate of the (3/2+) state, was found to be β2 = 0.22(6). This defo…
Level structure above the 17+ isomeric state in 152 69 Tm83
Excited states above the 17+ isomeric state in the proton-rich nucleus 152Tm were established by employing the recoil-isomer tagging technique. Data were collected using the JUROGAM gamma-ray array and the GREAT spectrometer together with the recoil ion transport unit (RITU) gas-filled recoil separator and analyzed to identify the prompt and delayed γ decays from the levels in 152Tm. Shell-model calculations, either in a large valence space or in a reduced model space with five protons in the π0h11/2 orbital and one neutron in the ν1f7/2 orbital, agree with the observed energies of the yrast levels up to angular momentum J = 21. The observation of near degeneracies in the energy spectrum ca…
Decay spectroscopy of 171,172Os and 171,172,174Ir
We report on a study of the α-decay fine structure and the associated Eα−Eγ correlations in the decays of 171,172Os and 171,172,174Ir. In total, 13 new α-decay energy lines have been resolved, and three new γ-ray transitions have been observed following the new decay branches to 168Re and 167W. The weak α-decay branch from the bandhead of the νi13/2 band in 171Os observed in this work highlights an unusual competition between α, β, and electromagnetic decays from this isomeric state. The nucleus 171Os is therefore one of few nuclei observed to exhibit three different decay modes from the same excited state. The nuclei of interest were produced in 92Mo(83Kr,xpyn) fusion-evaporation reactions…
Recoil-decay tagging spectroscopy of 162 74 W 88
Excited states in the highly neutron-deficient nucleus 162W have been investigated via the 92Mo(78Kr, 2α) 162W reaction. Prompt γ rays were detected by the JUROGAM II high-purity germanium detector array and the recoiling fusion-evaporation products were separated by the recoil ion transport unit (RITU) gas-filled recoil separator and identified with the gamma recoil electron alpha tagging (GREAT) spectrometer at the focal plane of RITU. γ rays from 162W were identified uniquely using mother-daughter and mother-daughter-granddaughter α-decay correlations. The observation of a rotational-like ground-state band is interpreted within the framework of total Routhian surface (TRS) calculations, …
Excited states in the proton-unbound nuclide 158Ta
Excited states in the neutron-deficient odd-odd proton-unbound nuclide 158Ta have been investigated in two separate experiments. In the first experiment, 166Ir nuclei were produced in the reactions of 380 MeV 78Kr ions with an isotopically enriched 92Mo target. The α-decay chain of the 9+ state in 166Ir was analyzed. Fine structure in the α decay of the 9+ state in 162Re established a 66 keV difference in excitation energy between the lowest-lying 9+ and 10+ states in 158Ta. Higher-lying states in 158Ta were populated in the reactions of 255 MeV 58Ni ions with an isotopically enriched 102Pd target. Gamma-ray decay paths that populate, depopulate, and bypass a 19− isomeric state have been id…
Shape coexistence in183Tl
Lifetime measurements in 166Re : Collective versus magnetic rotation
Lifetimes of excited states in the neutron-deficient odd-odd nucleus 166Re have been measured for the first time using the recoil distance Doppler-shift method. The measured lifetime for the (8−) state; τ = 480 (80) ps, enabled an assessment of the multipolarities of the γ rays depopulating this state. Information on electromagnetic transition strengths were deduced for the γ -ray transitions from the (9−), (10−), and (11−) states, and in the case of the (10−) and (11−) states limits on the B(M1) and B(E2) strengths were estimated. The results are compared with total Routhian surface predictions and semiclassical calculations. Tilted-axis cranking calculations based on a relativistic mean-f…
Evidence for octupole collectivity in 172Pt
Excited states in the extremely neutron-deficient nucleus 172Pt were populated via 96Ru(78Kr,2p) and 92Mo(83Kr,3n) reactions. The level scheme has been extended up to an excitation energy of ~ 5 MeV and tentative spin-parity assignments up to Iπ = 18+. Linear polarization and angular distribution measurements were used to determine the electromagnetic E1 character of the dipole transitions connecting the positive-parity ground-state band with an excited side-band, firmly establishing it as a negative-parity band. The lowest member of this negative-parity structure was firmly assigned spin-parity 3-. In addition, we observed an E3 transition from this 3- state to the ground state, providing…
Lifetime measurements of excited states in W-162 and W-164 and the evolution of collectivity in rare-earth nuclei
WOS: 000400140500006
Spin-dependent evolution of collectivity in 112Te
The evolution of collectivity with spin along the yrast line in the neutron-deficient nucleus 112Te has been studied by measuring the reduced transition probability of excited states in the yrast band. In particular, the lifetimes of the 4+ and 6+ excited states have been determined by using the recoil distance Doppler-shift method. The results are discussed using both large-scale shell-model and total Routhian surface calculations. peerReviewed
Identification of isomeric states in the N=73 neutron-deficient nuclei 132Pr and 130La
Decays from isomeric states in the neutron-deficient N=73 nuclei 132Pr and 130La have been observed for the first time. Half-lives of 486(70) ns and 2.46(4) μs were measured for two isomeric states in 132Pr. The decay from the 486ns (8 -) isomer has been interpreted as a hindered E1 transition from the bandhead state of the excited πh 11/2νg 7/2 configuration. The decay from the 2.5 μs (8 +) isomer is consistent with the Weisskopf estimate for a low-energy E2 transition. An analogous 0.74(3) μs decay from an (8 +) isomer in the neighboring isotone 130La has also been observed which similarly can be explained if the transition has E2 character. The Weisskopf interpretation for the isomer hin…
Erratum to: Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition) (Autophagy, 12, 1, 1-222, 10.1080/15548627.2015.1100356
non presente
Excited states in 217Ra populated in the α decay of 221Th
Fine structure in the α decay of 22190Th, populating excited states in 21788Ra, was studied using αγ-coincidence spectroscopy. Two α-decay branches from 221Th have been newly observed, with Eα(keV)[bα(%)]=7951(8)[0.14(3)] and 8247(3)[1.51(12)], together with three previously known branches. Also, two new states in 217Ra were identified at E = 177 and 227 keV. The ground-state configurations of the odd-A, N = 131 transitional isotones above 208Pb are interpreted from their α-decay fine structure systematics and considered in terms of predictions using spherical shell and reflection-asymmetric models. peerReviewed
α-decay spectroscopy of the N = 130 isotones 218Ra and 220Th: Mitigation of α-particle energy summing with implanted nuclei
An analysis technique has been developed in order to mitigate energy summing due to sequential short-lived α decays from nuclei implanted into a silicon detector. Using this technique, α-decay spectroscopy of the N=130 isotones 218Ra (Z=88) and 220Th (Z=90) has been performed. The energies of the α particles emitted in the 218Ra→214Rn and 220Th→216Ra ground-state-to-ground-state decays have been measured to be 8381(4) keV and 8818(13) keV, respectively. The half-lives of the ground states of 218Ra and 220Th have been measured to be 25.99(10) μs and 10.4(4) μs, respectively. The half-lives of the ground states of the α-decay daughters, 214Rn and 216Ra, have been measured to be 259(3) ns and …
Delayed or absent π(h11/2)2 alignment in 111Xe
Excited states have been identified in the very neutron-deficient N = Z + 3 nucleus 111Xe for the first time, using the 58Ni(58Ni, αn) heavy-ion fusion-evaporation reaction. γ -ray transitions have been unambiguously assigned to 111Xe by correlation with the characteristic 111Xe → 107Te → 103Sn α-decay chain using the method of recoil-decay tagging. Inspection of γ γ -coincidence data has shown that five of the transitions form a rotational-like sequence. Excitation-energy systematics suggest that the sequence could be the favored signature partner of a band built on an h11/2 neutron. Aligned angular momenta of states in the band have been compared to analogous bands in neighboring xenon is…
Single-particle states and parity doublets in odd-Z 221Ac and 225Pa from α-decay spectroscopy
Low-lying states in the odd-Z isotopes 22189Ac132 and 22591Pa134 have been studied using α-particle and αγ-coincidence spectroscopy in the 225Pa→221Ac→217Fr decay chain. Ground-state spin and parity assignments of Iπ = 5/2− are proposed for both 221Ac and 225Pa, with the odd proton occupying the Ω = 5/2 orbital of the quadrupole-octupole deformed shell model in both nuclei. In 221Ac, excited states in the bands based on the Ω = 5/2 and Ω = 3/2 orbitals have been identified, including proposed parity-doublet states. The results suggest that reflection-asymmetric deformation of the ground state persists in the odd-A members of the isotope chains down to N = 132 for Ac and N = 134 for Pa, befo…