Spaces of Operator-valued Functions Measurable with Respect to the Strong Operator Topology
Let X and Y be Banach spaces and (Ω, Σ, μ) a finite measure space. In this note we introduce the space L p /μ; ℒ(X, Y)] consisting of all (equivalence classes of) functions Φ:Ω↦ℒ(X, Y) such that ω↦Φ(ω)x is strongly μ-measurable for all x∈X and ω↦Φ(ω)f(ω) belongs to L 1(μ; Y) for all f∈L p′ (μ; X), 1/p+1/p′=1. We show that functions in L p /μ; ℒ(X, Y)] define operator-valued measures with bounded p-variation and use these spaces to obtain an isometric characterization of the space of all ℒ(X, Y)-valued multipliers acting boundedly from L p (μ; X) into L q (μ; Y), 1≤q<p<∞.