0000000000948769

AUTHOR

Audun Johannessen Skylvik

showing 1 related works from this author

Data-driven Fault Diagnosis of Induction Motors Using a Stacked Autoencoder Network

2019

Current signatures from an induction motor are normally used to detect anomalies in the condition of the motor based on signal processing techniques. However, false alarms might occur if using signal processing analysis alone since missing frequencies associated with faults in spectral analyses does not guarantee that a motor is fully healthy. To enhance fault diagnosis performance, this paper proposes a machinelearning based method using in-built motor currents to detect common faults in induction motors, namely inter-turn stator winding-, bearing- and broken rotor bar faults. This approach utilizes single-phase current data, being pre-processed using Welch’s method for spectral density es…

010302 applied physicsSignal processingbusiness.industryRotor (electric)Computer science020208 electrical & electronic engineeringSpectral density estimationPattern recognition02 engineering and technologyFault (power engineering)01 natural sciencesAutoencoderlaw.inventionSupport vector machineStatistical classificationlaw0103 physical sciences0202 electrical engineering electronic engineering information engineeringArtificial intelligencebusinessInduction motor2019 22nd International Conference on Electrical Machines and Systems (ICEMS)
researchProduct