0000000000949941

AUTHOR

Xin Zuo

0000-0002-0828-9748

Cross-Subject Emotion Recognition Using Fused Entropy Features of EEG.

Emotion recognition based on electroencephalography (EEG) has attracted high interest in fields such as health care, user experience evaluation, and human–computer interaction (HCI), as it plays an important role in human daily life. Although various approaches have been proposed to detect emotion states in previous studies, there is still a need to further study the dynamic changes of EEG in different emotions to detect emotion states accurately. Entropy-based features have been proved to be effective in mining the complexity information in EEG in many areas. However, different entropy features vary in revealing the implicit information of EEG. To improve system reliability, in this paper,…

research product

Driver Distraction Detection Using Bidirectional Long Short-Term Network Based on Multiscale Entropy of EEG

Driver distraction diverting drivers' attention to unrelated tasks and decreasing the ability to control vehicles, has aroused widespread concern about driving safety. Previous studies have found that driving performance decreases after distraction and have used vehicle behavioral features to detect distraction. But how brain activity changes while distraction remains unknown. Electroencephalography (EEG), a reliable indicator of brain activities has been widely employed in many fields. However, challenges still exist in mining the distraction information of EEG in realistic driving scenarios with uncertain information. In this paper, we propose a novel framework based on Multi-scale entrop…

research product