0000000000950034

AUTHOR

Tomasz Kociumaka

showing 2 related works from this author

Fast computation of abelian runs

2016

Given a word $w$ and a Parikh vector $\mathcal{P}$, an abelian run of period $\mathcal{P}$ in $w$ is a maximal occurrence of a substring of $w$ having abelian period $\mathcal{P}$. Our main result is an online algorithm that, given a word $w$ of length $n$ over an alphabet of cardinality $\sigma$ and a Parikh vector $\mathcal{P}$, returns all the abelian runs of period $\mathcal{P}$ in $w$ in time $O(n)$ and space $O(\sigma+p)$, where $p$ is the norm of $\mathcal{P}$, i.e., the sum of its components. We also present an online algorithm that computes all the abelian runs with periods of norm $p$ in $w$ in time $O(np)$, for any given norm $p$. Finally, we give an $O(n^2)$-time offline randomi…

FOS: Computer and information sciencesGeneral Computer ScienceComputationAbelian run[INFO.INFO-DS]Computer Science [cs]/Data Structures and Algorithms [cs.DS]Elementary abelian group0102 computer and information sciences02 engineering and technology01 natural sciencesRank of an abelian groupTheoretical Computer ScienceCombinatoricsComputer Science - Data Structures and Algorithms0202 electrical engineering electronic engineering information engineeringData Structures and Algorithms (cs.DS)[INFO]Computer Science [cs]Online algorithmAbelian groupComputingMilieux_MISCELLANEOUSMathematicsCombinatorics on wordDiscrete mathematicsComputer Science (all)Abelian periodText algorithm16. Peace & justiceSubstringRandomized algorithmCombinatorics on words010201 computation theory & mathematics020201 artificial intelligence & image processingComputer Science::Formal Languages and Automata Theory
researchProduct

On the Greedy Algorithm for the Shortest Common Superstring Problem with Reversals

2015

We study a variation of the classical Shortest Common Superstring (SCS) problem in which a shortest superstring of a finite set of strings $S$ is sought containing as a factor every string of $S$ or its reversal. We call this problem Shortest Common Superstring with Reversals (SCS-R). This problem has been introduced by Jiang et al., who designed a greedy-like algorithm with length approximation ratio $4$. In this paper, we show that a natural adaptation of the classical greedy algorithm for SCS has (optimal) compression ratio $\frac12$, i.e., the sum of the overlaps in the output string is at least half the sum of the overlaps in an optimal solution. We also provide a linear-time implement…

FOS: Computer and information sciences0102 computer and information sciences02 engineering and technologyInformation System01 natural sciencesString (physics)Theoretical Computer ScienceCombinatoricsHigh Energy Physics::TheoryAnalysis of algorithmGreedy algorithmComputer Science - Data Structures and Algorithms0202 electrical engineering electronic engineering information engineeringData Structures and Algorithms (cs.DS)Greedy algorithmFinite setAnalysis of algorithmsMathematicsSuperstring theoryShortest Common SuperstringComputer Science Applications1707 Computer Vision and Pattern RecognitionComputer Science ApplicationsReversalShortest Path Faster Algorithm010201 computation theory & mathematicsCompression ratioSignal Processing020201 artificial intelligence & image processingK shortest path routingInformation Systems
researchProduct