On the Inner Product Predicate and a Generalization of Matching Vector Families
Motivated by cryptographic applications such as predicate encryption, we consider the problem of representing an arbitrary predicate as the inner product predicate on two vectors. Concretely, fix a Boolean function $P$ and some modulus $q$. We are interested in encoding $x$ to $\vec x$ and $y$ to $\vec y$ so that $$P(x,y) = 1 \Longleftrightarrow \langle\vec x,\vec y\rangle= 0 \bmod q,$$ where the vectors should be as short as possible. This problem can also be viewed as a generalization of matching vector families, which corresponds to the equality predicate. Matching vector families have been used in the constructions of Ramsey graphs, private information retrieval (PIR) protocols, and mor…