0000000000951103
AUTHOR
T. Pissulla
New developments on the recoil distance doppler-shift method
Absolute transition probabilities are fundamental observables for nuclear structure. The recoil-distance-Doppler-shift (RDDS) technique, also called plunger technique, is a well established tool for the determination of these important experimental quantities via the measurement of lifetimes of excited nuclear states. Nowadays nuclear structure investigations are concentrated on exotic nuclei which are often produced with extremely small cross sections or with very low beam intensities. In order to use the RDDS technique also for the investigation of very exotic nuclei this method has to be adapted to the specific needs of these special reactions. This article gives an overview on recent RD…
Electromagnetic transition strengths in 109Te
Lifetime measurements have been made in the neutron-deficient nucleus 109Te using the coincident recoil distance Doppler-shift method. The experimental B(E2) values have been compared with state-of-the-art shellmodel calculations using the monopole-corrected realistic charge-dependent Bonn nucleon-nucleon potential. Lifetimes in the νh11/2 band are consistent with an interpretation based on the deformation driving properties of a single valence neutron outside of the even-even tellurium core and highlight the unexpected presence of collective behavior as the N = 50 shell closure is approached. Lifetime measurements for the low-lying positive-parity states also appear to correlate well with …
Anomalous transition strength in the proton-unbound nucleus I5653109
A lifetime measurement has been made for the first excited 11/2(+) state in the proton-unbound nucleus (109)(53)I56 using the recoil-distance Doppler-shift method in conjunction with recoil-proton ...
Lifetime measurements of excited states in neutron-rich nuclei around 48 Ca
The lifetimes of the first excited states of the N = 30 isotones 50Ca and 51Sc and the Z = 18 isotopes 44−46Ar isotopes have been determined using a novel technique that combines the Recoil Distance Doppler Shift method with the CLARA-PRISMA spectrometers in multinucleon transfer reactions. The results allow determinination of the effective charges above 48Ca and test the strength of the N = 28 magic number when moving away from the stability line. Gadea Raga, Andrés, Gadea.Andres@ific.uv.es ; Algora, Alejandro, Alejandro.Algora@ific.uv.es ; Rubio Barroso, Berta, Berta.Rubio@ific.uv.es
Isomer-tagged differential-plunger measurements in proton-unbound 144Ho
The lifetime of an excited state above a weakly populated isomer in the proton-unbound odd-odd nucleus 144Ho has been measured using the recoil distance Doppler shift method. This measurement represents the first differential-plunger lifetime measurement to utilize recoil-isomer tagging. The first excited I[pi]=(10+) state above the two-quasiparticle [pi]h11/2[circle times operator][nu]h11/2(8+) isomer was determined to have a lifetime of [tau]=6(1)�ps. Potential energy surface calculations, based on the configuration-constrained blocking method, predict the isomeric state to have [gamma]-soft triaxial-nuclear shape with [gamma][approximate]24�. The lifetime of the (10+) state can be unders…
Lifetime measurements and shape coexistence inDy144
The known level scheme of {sup 144}Dy has been extended and lifetime measurements have been made with the recoil-distance Doppler-shift method. Reduced transition probabilities and deformations have been determined for four low-lying transitions. These states form part of the first observed band crossing, giving information on the change in nuclear deformation resulting from the rearrangement of h{sub 11/2} protons in the nucleus. Two bands built upon excited 10{sup +} states have been assigned pi(h{sub 11/2}){sup 2} prolate and nu(h{sub 11/2}){sup -2} oblate configurations with tau=12(2)ps and 0.01<tau < or approx. 16ns, respectively. These long lifetimes are reasoned to be a result of sha…
Lifetime measurements probing triple shape coexistence in ^{175}Au
Lifetimes of the low-lying excited states in the very neutron-deficient nucleus ${}^{175}$Au have been measured by the recoil-distance Doppler-shift method using $\ensuremath{\gamma}$-ray spectra obtained with the recoil-decay tagging technique. Transition quadrupole moments and reduced transition probabilities extracted for this odd-$Z$ nucleus indicate the existence of three different shapes and the competition between collective and noncollective structures.
βdecay of102Y produced in projectile fission of238U
The population of 102Zr following the β decay of 102Y produced in the projectile fission of 238U at the GSI facility in Darmstadt, Germany has been studied. 102Y is known to ß decay into 102Zr via two states, one of high spin and the other low spin. These states preferentially populate different levels in the 102Zr daughter. In this paper the intensities of transitions in 102Zr observed are compared with those from the decay of the low-spin level studied at the TRISTAN facility at Brookhaven National Laboratory and of the high-spin level studied at the JOSEF separator at the Kernforschungsanlage Jülich.
Spectroscopy of the neutron-deficient nucleusOs16791
Excited states of the nucleus Os-167 have been populated by the reaction Mo-92(Kr-78,2pn). The JUROGAM gamma-ray detector array has been used in conjunction with the RITU gas-filled separator and the GREAT spectrometer to observe prompt gamma rays in coincidence with recoiling fusion-evaporation residues and their subsequent decay by alpha particle emission. By correlating prompt gamma radiation with the characteristic alpha radioactivity of Os-167, it has been possible to extend the level scheme for this nucleus significantly. In particular, an extension of the yrast band and four previously unobserved bands are reported. In addition, the recoil distance Doppler-shift method was used to de…