0000000000951212
AUTHOR
Sébastien Euphrasie
Microfabricated high temperature sensing platform dedicated to scanning thermal microscopy (SThM)
Abstract The monitoring of heat flux is becoming more and more critical for many materials and structures approaching nanometric dimensions. Scanning Thermal Microscopy (SThM) is one of the tools available for thermal measurement at the nanoscale and requires calibration. Here we report on a micro-hotplate device made of a platinum heater suspended on thin silicon nitride (SiN) membranes integrating specific features for SThM calibration. These heated reference samples can include a localized resistive temperature sensors (RTD) or standalone platinum membranes (typically 10 × 10 μm2) on which the temperature can be measured precisely. This functional area is dedicated to (1) estimate the th…
Experimental evidence of high spatial confinement of elastic energy in a phononic cantilever
We report on experimental high spatial confinement of elastic energy in a silicon phononic cantilever for which the quality factor of a higher-order flexural resonance is increased by a factor of 27 (from Q ∼ 80 to Q ∼ 2130) with the use of a three-row phononic crystal (PnC) strip. As shown by numerical simulations performed with the finite element method, the PnC both reduces anchor loss and confines elastic energy inside the cantilever. The PnC and the cantilever are fabricated with standard clean room techniques on a silicon on insulator substrate. Optical measurements of the out-of-plane displacements are performed with a laser scanning interferometer in a frequency range around 2 MHz.