0000000000951827

AUTHOR

Marina Murillo Arcila

showing 2 related works from this author

A Teaching proposal for the study of eigenvectors and eigenvalues

2017

[EN] In this work, we present a teaching proposal which emphasizes on visualization and physical applications in the study of eigenvectors and eigenvalues. These concepts are introduced using the notion of the moment of inertia of a rigid body and the GeoGebra software. The proposal was motivated after observing students¿ difficulties when treating eigenvectors and eigenvalues from a geometric point of view. It was designed following a particular sequence of activities with the schema: exploration, introduction of concepts, structuring of knowledge and application, and considering the three worlds of mathematical thinking provided by Tall: embodied, symbolic and formal.

Algebras LinearMoments d'inèrciaComputer scienceÀlgebra lineal -- EnsenyamentMathematicsofComputing_NUMERICALANALYSISMathematics education -- Algebralcsh:TechnologyStructuringEducationMoments of inertiaSoftwareUndergraduate mathematics educationSchema (psychology):Ensenyament i aprenentatge::Ensenyament universitari [Àrees temàtiques de la UPC]Ensenyament universitari0501 psychology and cognitive sciencesLinear algebraundergraduate mathematics educationMatemàtica -- Educació secundàriaEigenvalues and eigenvectorsundergraduate mathematics education linear algebra eigenvectors and eigenvalues moments of inertia GeoGebralcsh:LC8-6691moments of inertialcsh:Special aspects of educationlcsh:Tbusiness.industry05 social sciences050301 educationEigenvaluesRigid bodyVisualizationAlgebraGeoGebraValors propislinear algebralcsh:TA1-2040Embodied cognitionLinear algebralcsh:Llcsh:Engineering (General). Civil engineering (General)EigenvectorsbusinessMATEMATICA APLICADA0503 educationEigenvectors and eigenvalueseigenvectors and eigenvalueslcsh:Education050104 developmental & child psychology
researchProduct

Coloring Linear Algebra

2016

[EN] We present an example of how we can introduce basic concepts on Linear Algebra in a first course of an Engineering School. We use the RGB pattern color which allows us to decompose a color into three primary colors (namely, red, green, blue). By using this model we give a natural connexion between the additivity of the color decomposition and the notions on linear algebra (as vector space, linear combination and convex linear span of vectors). To visualize these connexions we use Geogebra.

RGB pattern colorLinear AlgebraMathematical modellingLinear combinationÁlgebra lineal combinación lineal modelización matemática modelo de color RGBModelización matemáticaÁlgebra linealModelo de color RGBlcsh:L7-991lcsh:Education (General)Combinación linealModelling in Science Education and Learning
researchProduct