Thermoconvective instability and local thermal non-equilibrium in a porous layer with isoflux-isothermal boundary conditions
The effects of lack of local thermal equilibrium between the solid phase and the fluid phase are taken into account for the convective stability analysis of a horizontal porous layer. The layer is bounded by a pair of plane parallel walls which are impermeable and such that the lower wall is subject to a uniform flux heating, while the upper wall is isothermal. The local thermal non-equilibrium is modelled through a two-temperature formulation of the energy exchange between the phases, resulting in a pair of local energy balance equations: one for each phase. Small-amplitude disturbances of the basic rest state are envisaged to test the stability. Then, the standard normal mode procedure is…
Thermally unstable throughflow of a power–law fluid in a vertical porous cylinder with arbitrary cross–section
Abstract The present paper investigates how the cross–sectional shape of a vertical porous cylinder affects the onset of thermoconvective instability of the Rayleigh–Benard type. The fluid saturating the porous medium is assumed to be a non–Newtonian power–law fluid. A linear stability analysis of the vertical thorughflow is carried out. Three special shapes of the cylinder cross–section are analysed: square, circular and elliptical. The effect of changing the power–law index is investigated. The stability of a steady base state with vertical throughflow is analysed. The resulting stability problem is a differential eigenvalue problem that is solved numerically through the shooting method. …
Local thermal non-equilibrium effects in the Darcy–Bénard instability of a porous layer heated from below by a uniform flux
Abstract The influence of the lack of thermal equilibrium between the solid phase and the fluid phase on the convective instability in a porous medium is studied. A horizontal layer with parallel and impermeable bounding walls is considered. The lower wall is assumed to be isoflux, and the upper wall isothermal. The basic motionless state is perturbed with small-amplitude disturbances, so that a linear analysis of the instability is carried out with a streamfunction-temperature formulation of the local balance equations. Then, the governing equations are solved for the normal modes, leading to an eigenvalue problem for the neutral stability. This eigenvalue problem is solved analytically, t…