0000000000954496

AUTHOR

Nina Schürmann

showing 2 related works from this author

Molecular dissection of human Argonaute proteins by DNA shuffling.

2013

A paramount task in RNA interference research is to decipher the complex biology of cellular effectors, exemplified in humans by four pleiotropic Argonaute proteins (Ago1-Ago4). Here, we exploited DNA family shuffling, a molecular evolution technology, to generate chimeric Ago protein libraries for dissection of intricate phenotypes independently of prior structural knowledge. Through shuffling of human Ago2 and Ago3, we discovered two N-terminal motifs that govern RNA cleavage in concert with the PIWI domain. Structural modeling predicts an impact on protein rigidity and/or RNA-PIWI alignment, suggesting new mechanistic explanations for Ago3's slicing deficiency. Characterization of hybrid…

Models MolecularDNA ComplementaryProtein ConformationRecombinant Fusion ProteinsMolecular Sequence DataDNA RecombinantPiwi-interacting RNASequence alignmentComputational biologyBiologyStructural BiologyMolecular evolutionRNA interferenceConsensus SequenceConsensus sequenceHumansAmino Acid SequenceEukaryotic Initiation FactorsRNA Processing Post-TranscriptionalRNA Small InterferingMolecular BiologyGene LibraryGeneticsSequence Homology Amino AcidRNADNA ShufflingArgonauteDNA shufflingProtein Structure TertiaryMicroRNAsPhenotypeArgonaute ProteinsRNA InterferenceDirected Molecular EvolutionSequence AlignmentNature structuralmolecular biology
researchProduct

A Robust and All-Inclusive Pipeline for Shuffling of Adeno-Associated Viruses.

2018

Adeno-associated viruses (AAV) are attractive templates for engineering of synthetic gene delivery vectors. A particularly powerful technology for breeding of novel vectors with improved properties is DNA family shuffling, i.e., generation of chimeric capsids by homology-driven DNA recombination. Here, to make AAV DNA shuffling available to a wider community, we present a robust experimental and bioinformatical pipeline comprising: (i) standardized and partially codon-optimized plasmids carrying 12 different AAV capsid genes; (ii) a scalable protocol including troubleshooting guide for viral library production; and (iii) the freely available software SALANTO for comprehensive analysis of ch…

0106 biological sciencesComputer sciencevirusesGenetic VectorsBiomedical EngineeringComputational biologymedicine.disease_cause01 natural sciencesBiochemistry Genetics and Molecular Biology (miscellaneous)law.inventionEvolution Molecular03 medical and health scienceschemistry.chemical_compoundPlasmidlaw010608 biotechnologymedicineGeneAdeno-associated virus030304 developmental biology0303 health sciencesShufflingGene Transfer TechniquesGeneral MedicineDependovirusDNA shufflingchemistryCapsidRecombinant DNADNAACS synthetic biology
researchProduct