0000000000956512

AUTHOR

Laura Blasco-chamarro

showing 2 related works from this author

Adult Neural Stem Cells Are Alerted by Systemic Inflammation through TNF-α Receptor Signaling.

2021

Summary Adult stem cells (SCs) transit between the cell cycle and a poorly defined quiescent state. Single neural SCs (NSCs) with quiescent, primed-for-activation, and activated cell transcriptomes have been obtained from the subependymal zone (SEZ), but the functional regulation of these states under homeostasis is not understood. Here, we develop a multilevel strategy to analyze these NSC states with the aim to uncover signals that regulate their level of quiescence/activation. We show that transitions between states occur in vivo and that activated and primed, but not quiescent, states can be captured and studied in culture. We also show that peripherally induced inflammation promotes a …

NeurogenesisInflammationBiologyReceptors Tumor Necrosis Factor03 medical and health sciences0302 clinical medicineNeural Stem CellsLateral VentriclesGeneticsSubependymal zonemedicineHumansReceptor030304 developmental biologyInflammation0303 health sciencesMicrogliaTumor Necrosis Factor-alphaNeurogenesisCell BiologyNeural stem cellCell biologyAdult Stem Cellsmedicine.anatomical_structurenervous systemReceptors Tumor Necrosis Factor Type IMolecular MedicineSignal transductionmedicine.symptom030217 neurology & neurosurgeryAdult stem cellSignal TransductionCell stem cell
researchProduct

Vascular Senescence: A Potential Bridge Between Physiological Aging and Neurogenic Decline

2021

The adult mammalian brain contains distinct neurogenic niches harboring populations of neural stem cells (NSCs) with the capacity to sustain the generation of specific subtypes of neurons during the lifetime. However, their ability to produce new progeny declines with age. The microenvironment of these specialized niches provides multiple cellular and molecular signals that condition NSC behavior and potential. Among the different niche components, vasculature has gained increasing interest over the years due to its undeniable role in NSC regulation and its therapeutic potential for neurogenesis enhancement. NSCs are uniquely positioned to receive both locally secreted factors and adhesion-…

ParabiosisGeneral NeuroscienceNicheNeurogenesisneurogenic nicheNeurosciences. Biological psychiatry. NeuropsychiatryReviewBiologyadult neural stem cellNeural stem cellPhysiological AgingBridge (graph theory)senescence-associated secretory phenotypeAging brainparabiosisHeterochronyNeuroscienceNeuroscienceendothelial cell senescenceRC321-571Frontiers in Neuroscience
researchProduct