0000000000958393
AUTHOR
K. Strambach
Locally compact (2, 2)-transformation groups
We determine all locally compact imprimitive transformation groups acting sharply 2-transitively on a non-totally disconnected quotient space of blocks inducing on any block a sharply 2-transitive group and satisfying the following condition: if Δ1, Δ2 are two distinct blocks and Pi, Qi ∈ Δi (i = 1, 2), then there is just one element in the inertia subgroup which maps Pi onto Qi. These groups are natural generalizations of the group of affine mappings of the line over the algebra of dual numbers over the field of real or complex numbers or over the skew-field of quaternions. For imprimitive locally compact groups, our results correspond to the classical results of Kalscheuer for primitive l…
Algebraic Groups and Lie Groups with Few Factors
In the theory of locally compact topological groups, the aspects and notions from abstract group theory have conquered a meaningful place from the beginning (see New Bibliography in [44] and, e.g. [41–43]). Imposing grouptheoretical conditions on the closed connected subgroups of a topological group has always been the way to develop the theory of locally compact groups along the lines of the theory of abstract groups. Despite the fact that the class of algebraic groups has become a classical object in the mathematics of the last decades, most of the attention was concentrated on reductive algebraic groups. For an affine connected solvable algebraic group G, the theorem of Lie–Kolchin has b…
NEAR-RINGS AND GROUPS OF AFFINE MAPPINGS
We classify semi-topological locally compact and semi-algebraic near-rings R where the set of non-invertible elements of R forms an ideal I of R such that the multiplicative group of R/I acts sharply transitively on I\{0}. To achieve our results we use as a main tool the classi cation of locally compact and algebraic (2; 2)-transformation groups given in two previuos papers.