0000000000958605

AUTHOR

Seymen Avci

EPCR Guides Hematopoietic Stem Cells Homing to the Bone Marrow Independently of Niche Clearance

Abstract Bone marrow (BM) homing and lodgment of long-term repopulating hematopoietic stem cells (LT-HSCs) are active and essential first steps during embryonic development and in clinical stem cell transplantation. Rare, BM LT-HSCs endowed with the highest self-renewal and durable repopulation potential, functionally express the anticoagulant endothelial protein C receptor (EPCR) and PAR1. In addition to coagulation and inflammation, EPCR-PAR1 signaling independently controls a BM LT-HSC retention-release switch via regulation of nitric oxide (NO) production within LT-HSCs. EPCR+ LT-HSCs are maintained in thrombomodulin+ (TM) periarterial BM microenvironments via production of activated pr…

research product

Inverse PAR1 Activity of Hematopoietic Stem Cells and BM Stromal Cells Mediates G-CSF-Induced Mobilization By Regulation of Nitric Oxide Generation

Abstract Hematopoietic stem and progenitor cell (HSPC) egress from the bone marrow (BM) to the circulation is tightly regulated and is accelerated during stress conditions, a process utilized for BM harvest. Recently, we demonstrated that mouse long term repopulating hematopoietic stem cell (LT-HSC) BM retention and their rapid release to the blood circulation are governed by a switch in nitric oxide (NO) generation via distinct coagulation-related protease activated receptor 1 (PAR1) cascades (Gur-Cohen S. et al., NM, 2016). Herein we report that surface PAR1 expression can be exploited and serve as a positive predictive marker for the efficiency of human CD34+ HSPC mobilization among heal…

research product