0000000000959138

AUTHOR

S. Vigolo

showing 16 related works from this author

D -Meson Azimuthal Anisotropy in Midcentral Pb-Pb Collisions at sNN=5.02  TeV

2018

A.I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation (ANSL), State Committee of Science and World Federation of Scientists (WFS), Armenia; Austrian Academy of Sciences and Nationalstiftung fur Forschung, Technologie und Entwicklung, Austria; Ministry of Communications and High Technologies, National Nuclear Research Center, Azerbaijan; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Universidade Federal do Rio Grande do Sul (UFRGS), Financiadora de Estudos e Projetos (Finep), and Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP), Brazil; Ministry of Science and Technology of China (MSTC), National Natural Science Foundation of …

Particle physicsHigher education010308 nuclear & particles physicsbusiness.industry4. EducationAtomic energyIndustrial researchGeneral Physics and AstronomyLibrary science01 natural scienceslanguage.human_languageBildungResearch centrePolitical science0103 physical scienceslanguageSlovak010306 general physicsChinabusinessResearch centerPhysical Review Letters
researchProduct

Searches for transverse momentum dependent flow vector fluctuations in Pb-Pb and p-Pb collisions at the LHC

2017

The measurement of azimuthal correlations of charged particles is presented for Pb-Pb collisions at $\sqrt{s_{\rm NN}}=$ 2.76 TeV and p-Pb collisions at $\sqrt{s_{\rm NN}}=$ 5.02 TeV with the ALICE detector at the CERN Large Hadron Collider. These correlations are measured for the second, third and fourth order flow vector in the pseudorapidity region $|��|<0.8$ as a function of centrality and transverse momentum $p_{\rm T}$ using two observables, to search for evidence of $p_{\rm T}$-dependent flow vector fluctuations. For Pb-Pb collisions at 2.76 TeV, the measurements indicate that $p_{\rm T}$-dependent fluctuations are only present for the second order flow vector. Similar results hav…

HEAVY-ION COLLISIONSnucl-extransverse momentum dependenceCOLLABORATIONangular correlation [charged particle]High Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)ALICEmodel: hydrodynamicstransport theory[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear Experiment (nucl-ex)[ PHYS.NEXP ] Physics [physics]/Nuclear Experiment [nucl-ex]Nuclear ExperimentNuclear ExperimentMonte CarloHeavy Ion Experiments; RELATIVISTIC NUCLEAR COLLISIONS; HEAVY-ION COLLISIONS; QUARK-GLUON; PLASMA; COLLECTIVE FLOW; COLLABORATIONPLASMAfluctuation [geometry]flow: anisotropygeometry: fluctuationQUARK-GLUONCERN LHC CollHeavy Ion Experiments; Nuclear and High Energy PhysicsflowRELATIVISTIC NUCLEAR COLLISIONSHeavy Ion ExperimentQuark-Gluon PlasmaParticle Physics - Experiment2760 GeV/nucleon5020 GeV/nucleonNuclear and High Energy PhysicsCERN LabCOLLECTIVE FLOWFOS: Physical sciencestransverse momentum[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]vector [fluctuation]Heavy Ion Experimentsscattering [heavy ion][ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex]factorizationlcsh:Nuclear and particle physics. Atomic energy. Radioactivityddc:530hydrodynamics [model]Nuclear Physics - Experimentnumerical calculationsinitial stateleadHeavy Ion Experiments Nuclear and High Energy Physics.hep-exboundary conditionrapiditycorrelationviscositylcsh:QC770-798High Energy Physics::Experimentp nucleusentropy: densitycharged particle: angular correlationexperimental results
researchProduct

Flow dominance and factorization of transverse momentum correlations in Pb-Pb collisions at the LHC

2017

Physical review letters 118(16), 162302 (2017). doi:10.1103/PhysRevLett.118.162302

heavy ion: scattering:Kjerne- og elementærpartikkelfysikk: 431 [VDP]transverse momentum [correlation function]correlation [momentum]550Pb-PbPb-Pb collisionsGeneral Physics and Astronomyhiukkasfysiikkanucl-exPP01 natural sciencesHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)ALICEDEPENDENCEddc:550Nuclear Experiment (nucl-ex)ROOT-S(NN)=2.76 TEVNuclear ExperimentPERSPECTIVENuclear ExperimentPhysics and Astronomy (all); ALICE; LHCPhysicscorrelation function: transverse momentumPhysicsflow ; transverse ; momentum ; Pb-Pbtransverse momentum: correlationtwo-particleHanbury-Brown-Twiss effect:Mathematics and natural scienses: 400::Physics: 430::Nuclear and elementary particle physics: 431 [VDP]PRIRODNE ZNANOSTI. Fizika.transverseTransverse planeCorrelation function (statistical mechanics)CERN LHC Coll:Nuclear and elementary particle physics: 431 [VDP]flowPseudorapidityLHCParticle Physics - ExperimentdeconfinementParticle physicscollectiveVDP::Matematikk og naturvitenskap: 400::Fysikk: 430::Kjerne- og elementærpartikkelfysikk: 431FOS: Physical sciencesmomentumtriangulationPhysics and Astronomy(all)[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]114 Physical sciencesBethe ansatzMomentumNuclear physicsCENTRALITYPhysics and Astronomy (all)statistical analysisFactorizationscattering [heavy ion]Relativistic heavy-ion collisions0103 physical sciencesALICE / ALICE2760 GeV-cmsNuclear Physics - ExperimentRapiditystructurenumerical calculations010306 general physicsNuclear Physicstwo-particle transverse momentum differential correlation functionAnsatzleadDEPENDENCE PERSPECTIVE CENTRALITY PP.ta114VDP::Mathematics and natural scienses: 400::Physics: 430::Nuclear and elementary particle physics: 431hep-ex010308 nuclear & particles physics:Matematikk og naturvitenskap: 400::Fysikk: 430::Kjerne- og elementærpartikkelfysikk: 431 [VDP]momentum: correlationBethe ansatzROOT-S(NN)=2.76 TEV; DEPENDENCE; PERSPECTIVE; PPNATURAL SCIENCES. Physics.rapiditypile-uptransverse momentum: factorizationfactorization [transverse momentum]correlation [transverse momentum]experimental results
researchProduct

Measuring KS0K± interactions using Pb–Pb collisions at sNN=2.76 TeV

2019

We present the first measurements of femtoscopic correlations between the KS0 and K± particles in pp collisions at s=7 TeV measured by the ALICE experiment. The observed femtoscopic correlations are consistent with final-state interactions proceeding solely via the a0(980) resonance. The extracted kaon source radius and correlation strength parameters for KS0K− are found to be equal within the experimental uncertainties to those for KS0K+ . Results of the present study are compared with those from identical-kaon femtoscopic studies also performed with pp collisions at s=7 TeV by ALICE and with a KS0K± measurement in Pb–Pb collisions at sNN=2.76 TeV. Combined with the Pb–Pb results, our pp a…

Quantum chromodynamicsPhysicsCouplingNuclear and High Energy PhysicsLarge Hadron Collider010308 nuclear & particles physicsRadius01 natural sciencesResonance (particle physics)Particle identificationNuclear physicsDiquarkHadron physics0103 physical sciencesStatistical analysisTetraquark010306 general physicsPhysics Letters B
researchProduct

Search for collectivity with azimuthal J/ψ-hadron correlations in high multiplicity p–Pb collisions at sNN=5.02 and 8.16 TeV

2018

A.I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation (ANSL), State Committee of Science and World Federation of Scientists (WFS), Armenia; Austrian Academy of Sciences and Nationalstiftung fur Forschung, Technologie und Entwicklung, Austria; Ministry of Communications and High Technologies, National Nuclear Research Center, Azerbaijan; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Universidade Federal do Rio Grande do Sul (UFRGS), Financiadora de Estudos e Projetos (Finep) and Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP), Brazil; Ministry of Science & Technology of China (MSTC), National Natural Science Foundation of Chi…

PhysicsSustainable developmentNuclear and High Energy PhysicsParticle physicsHigher education9. Industry and infrastructure010308 nuclear & particles physicsbusiness.industry4. EducationAtomic energyLibrary scienceHigh multiplicity01 natural scienceslanguage.human_languageBildung0103 physical scienceslanguageSlovak010306 general physicsbusinessChinaResearch centerPhysics Letters B
researchProduct

Linear and non-linear flow mode in Pb–Pb collisions at sNN=2.76 TeV

2017

The second and the third order anisotropic flow, V2 and V3, are mostly determined by the corresponding initial spatial anisotropy coefficients, e2 and e3, in the initial density distribution. In addition to their dependence on the same order initial anisotropy coefficient, higher order anisotropic flow, Vn (n > 3), can also have a significant contribution from lower order initial anisotropy coefficients, which leads to mode-coupling effects. In this Letter we investigate the linear and non-linear modes in higher order anisotropic flow Vn for n = 4, 5, 6 with the ALICE detector at the Large Hadron Collider. The measurements are done for particles in the pseudorapidity range |η| < 0.8 and the…

PhysicsNuclear and High Energy Physics010308 nuclear & particles physicsHadron01 natural sciencesNuclear physicsThird orderViscosityFlow (mathematics)Pseudorapidity0103 physical sciencesRapidityBoundary value problem010306 general physicsAnisotropyPhysics Letters B
researchProduct

Azimuthally Differential Pion Femtoscopy in Pb-Pb Collisions at sNN=2.76  TeV

2017

We present the first azimuthally differential measurements of the pion source size relative to the second harmonic event plane in Pb-Pb collisions at a center-of-mass energy per nucleon-nucleon pair of √sNN = 2.76 TeV. The measurements have been performed in the centrality range 0%-50% and for pion pair transverse momenta 0.2 < kT < 0.7 GeV/c. We find that the Rside and Rout radii, which characterize the pion source size in the directions perpendicular and parallel to the pion transverse momentum, oscillate out of phase, similar to what was observed at the Relativistic Heavy Ion Collider. The final-state source eccentricity, estimated via Rside oscillations, is found to be significantly sma…

PhysicsParticle physicsLarge Hadron Collider010308 nuclear & particles physicsOscillationmedia_common.quotation_subjectNuclear TheoryHadronGeneral Physics and Astronomy01 natural sciencesNuclear physicsTransverse planePion0103 physical sciencesRapidityEccentricity (behavior)Nuclear Experiment010306 general physicsRelativistic Heavy Ion Collidermedia_commonPhysical Review Letters
researchProduct

Jet-like correlations with neutral pion triggers in pp and central Pb–Pb collisions at 2.76 TeV

2016

Physics letters / B B763, 238 - 250 (2016). doi:10.1016/j.physletb.2016.10.048

heavy ion: scattering:Kjerne- og elementærpartikkelfysikk: 431 [VDP]ROOT-S(NN)=200 GEVQUARK-GLUON PLASMA; TRANSVERSE-MOMENTUM DEPENDENCE; LEAD-LEAD COLLISIONS; ROOT-S(NN)=2.76 TEV; ROOT-S-NN=2.76 TEV; ATLAS DETECTOR; SUPPRESSION; COLLABORATION; PERSPECTIVE; HADRONSHadronATLAS DETECTORCOLLABORATION01 natural sciencespi: triggerfragmentation functionParticle identificationHigh Energy Physics - ExperimentQUARK-GLUON PLASMAHADRON CORRELATIONSHigh Energy Physics - Experiment (hep-ex)ALICEp-Pb collisionsANISOTROPIC FLOWLEAD-LEADscattering [p p][PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear Experiment (nucl-ex)ROOT-S(NN)=2.76 TEVPERSPECTIVENuclear ExperimentMonte CarloNuclear ExperimentPhysicsTime projection chamberHADRONSPerturbative QCDneutral pion ; lead-lead ; correlationsuppressioncharged particlelcsh:QC1-999Charged particleTRANSVERSE-MOMENTUM DEPENDENCE CENTRAL AU+AU COLLISIONS LEAD-LEAD COLLISIONS PLUS AU COLLISIONS QUARK-GLUON PLASMA HADRON CORRELATIONS ROOT-S-NN=2.76 TEV ROOT-S(NN)=200 GEV CHARGED-PARTICLES ANISOTROPIC FLOW.:Mathematics and natural scienses: 400::Physics: 430::Nuclear and elementary particle physics: 431 [VDP]PRIRODNE ZNANOSTI. Fizika.:Nuclear and elementary particle physics: 431 [VDP]CHARGED-PARTICLESflowLEAD-LEAD COLLISIONSperturbation theory [quantum chromodynamics]correlation: two-particleCOLLISIONSParticle physicsp p: scatteringPLUS AU COLLISIONSNuclear and High Energy PhysicseducationVDP::Matematikk og naturvitenskap: 400::Fysikk: 430::Kjerne- og elementærpartikkelfysikk: 431FOS: Physical sciences[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]transverse momentumtriggerstrigger [pi]114 Physical sciencesQUARK-GLUON PLASMA; TRANSVERSE-MOMENTUM DEPENDENCE; LEAD-LEAD; COLLISIONS; ROOT-S(NN)=2.76 TEV; ROOT-S-NN=2.76 TEV; ATLAS DETECTOR; SUPPRESSION; COLLABORATION; PERSPECTIVE; HADRONS530ROOT-S-NN=2.76 TEVNuclear physicsPionTRANSVERSE-MOMENTUM DEPENDENCEscattering [heavy ion]0103 physical sciencesFragmentation functionddc:530Nuclear Physics - Experimentquantum chromodynamics: perturbation theory010306 general physicscapturetwo-particle correlationstwo-particle [correlation]enhancementSUPPRESSIONneutral pionVDP::Mathematics and natural scienses: 400::Physics: 430::Nuclear and elementary particle physics: 431ta114CENTRAL AU+AU COLLISIONS010308 nuclear & particles physicsbackground:Matematikk og naturvitenskap: 400::Fysikk: 430::Kjerne- og elementærpartikkelfysikk: 431 [VDP]NATURAL SCIENCES. Physics.lead-leadcorrelationQuark–gluon plasmaproton-proton collisionsHigh Energy Physics::Experimenthadronlcsh:Physics
researchProduct

Production of 4He and 4He‾ in Pb–Pb collisions at sNN=2.76TeV at the LHC

2018

Results on the production of 4 He and He‾4 nuclei in Pb–Pb collisions at sNN=2.76TeV in the rapidity range |y|<1 , using the ALICE detector, are presented in this paper. The rapidity densities corresponding to 0–10% central events are found to be dN/dyHe4=(0.8±0.4(stat)±0.3(syst))×10−6 and dN/dyHe‾4=(1.1±0.4(stat)±0.2(syst))×10−6 , respectively. This is in agreement with the statistical thermal model expectation assuming the same chemical freeze-out temperature ( Tchem=156MeV ) as for light hadrons. The measured ratio of He‾4/4He is 1.4±0.8(stat)±0.5(syst) .

PhysicsNuclear and High Energy PhysicsParticle physicsTime projection chamberLarge Hadron ColliderTime of flight detector010308 nuclear & particles physicsHadron01 natural sciences0103 physical sciencesQuark–gluon plasmaRapidityThermal model010306 general physicsNuclear Physics A
researchProduct

Production of muons from heavy-flavour hadron decays in p–Pb collisions at sNN=5.02 TeV

2017

Abstract The production of muons from heavy-flavour hadron decays in p–Pb collisions at s NN = 5.02 TeV was studied for 2 p T 16 GeV/c with the ALICE detector at the CERN LHC. The measurement was performed at forward (p-going direction) and backward (Pb-going direction) rapidity, in the ranges of rapidity in the centre-of-mass system (cms) 2.03 y cms 3.53 and − 4.46 y cms − 2.96 , respectively. The production cross sections and nuclear modification factors are presented as a function of transverse momentum ( p T ). At forward rapidity, the nuclear modification factor is compatible with unity while at backward rapidity, in the interval 2.5 p T 3.5 GeV/c, it is above unity by more than 2σ. Th…

PhysicsNuclear and High Energy PhysicsParticle physicsMuonLarge Hadron ColliderPhysics::Instrumentation and Detectors010308 nuclear & particles physicsHadronFlavourNuclear matter7. Clean energy01 natural sciencesNuclear physics0103 physical sciencesQuark–gluon plasmaHigh Energy Physics::ExperimentProduction (computer science)RapidityNuclear Experiment010306 general physicsPhysics Letters B
researchProduct

Centrality dependence of the pseudorapidity density distribution for charged particles in Pb–Pb collisions at sNN=2.76 TeV

2017

We present the charged-particle pseudorapidity density in Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}}=5.02\,\mathrm{Te\kern-.25exV}$ in centrality classes measured by ALICE. The measurement covers a wide pseudorapidity range from $-3.5$ to $5$, which is sufficient for reliable estimates of the total number of charged particles produced in the collisions. For the most central (0-5%) collisions we find $21\,400\pm 1\,300$ while for the most peripheral (80-90%) we find $230\pm 38$. This corresponds to an increase of $(27\pm4)\%$ over the results at $\sqrt{s_{\mathrm{NN}}}=2.76\,\mathrm{Te\kern-.25exV}$ previously reported by ALICE. The energy dependence of the total number of charged particles…

PhysicsNuclear and High Energy PhysicsParticle physicsLarge Hadron Collider010308 nuclear & particles physicsExtrapolation01 natural sciencesCharged particleColor-glass condensateNuclear physicsPseudorapidity0103 physical sciencesQuark–gluon plasmaRapidityImpact parameterCentralityNuclear Experiment010306 general physicsNucleonGlauberScalingPhysics Letters B
researchProduct

Determination of the event collision time with the ALICE detector at the LHC

2017

The European physical journal / Plus 132(2), 99 (2017). doi:10.1140/epjp/i2017-11279-1

Physics - Instrumentation and DetectorsPhysics::Instrumentation and Detectorsmeasurement methodsGeneral Physics and Astronomycollision time01 natural sciencesParticle identificationALICEscattering [p p]Nuclear Experiment (nucl-ex)Detectors and Experimental Techniquesscattering [nucleus nucleus]time resolutionNuclear ExperimentPhysicsLarge Hadron ColliderDetectorInstrumentation and Detectors (physics.ins-det)nucleus nucleus: scatteringPower (physics)PRIRODNE ZNANOSTI. Fizika.Time of flightLHCParticle physicsp p: scatteringPhysics and Astronomy (all) ALICE LHCeventFOS: Physical sciencesPhysics and Astronomy(all)[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]time-of-flight530114 Physical sciencesNuclear physicsALICE detectorPhysics and Astronomy (all)0103 physical sciencesddc:530Nuclear Physics - Experiment[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]:Matematikk og Naturvitenskap: 400::Fysikk: 430::Kjerne- og elementærpartikkelfysikk: 431 [VDP]010306 general physicsp nucleus: scattering010308 nuclear & particles physicsscattering [p nucleus]PERFORMANCECollisionNATURAL SCIENCES. Physics.efficiencyALICE ; event ; collision timeALICE (propellant)particle identificationEvent (particle physics)
researchProduct

J/ production as a function of charged-particle pseudorapidity density in p–Pb collisions at

2017

We report measurements of the inclusive J/ψ yield and average transverse momentum as a function of charged-particle pseudorapidity density dNch/dη in p–Pb collisions at sNN=5.02TeV with ALICE at the LHC. The observables are normalised to their corresponding averages in non-single diffractive events. An increase of the normalised J/ψ yield with normalised dNch/dη, measured at mid-rapidity, is observed at mid-rapidity and backward rapidity. At forward rapidity, a saturation of the relative yield is observed for high charged-particle multiplicities. The normalised average transverse momentum at forward and backward rapidities increases with multiplicity at low multiplicities and saturates beyo…

PhysicsNuclear and High Energy PhysicsLarge Hadron Collider010308 nuclear & particles physicsMonte Carlo methodObservableMultiplicity (mathematics)01 natural sciencesCharged particleNuclear physicsPseudorapidity0103 physical sciencesTransverse momentumRapidityNuclear Experiment010306 general physicsPhysics Letters
researchProduct

The ALICE Transition Radiation Detector: Construction, operation, and performance

2018

The Transition Radiation Detector (TRD) was designed and built to enhance the capabilities of the ALICE detector at the Large Hadron Collider (LHC). While aimed at providing electron identification and triggering, the TRD also contributes significantly to the track reconstruction and calibration in the central barrel of ALICE. In this paper the design, construction, operation, and performance of this detector are discussed. A pion rejection factor of up to 410 is achieved at a momentum of 1 GeV/$c$ in p-Pb collisions and the resolution at high transverse momentum improves by about 40% when including the TRD information in track reconstruction. The triggering capability is demonstrated both …

Physics - Instrumentation and Detectors:Kjerne- og elementærpartikkelfysikk: 431 [VDP]TRPhysics::Instrumentation and DetectorsCOLLIDING BEAM EXPERIMENT; ELECTRON IDENTIFICATION; DRIFT CHAMBERS; TRD PROTOTYPES; ENERGY-LOSS; GEV/C; COLLISIONS; PIONSparticle identification [electron]Ionisation energy loTracking (particle physics)Transition radiation detector ; Multi-wire proportional drift chamber ; Fibre/foam sandwich radiator ; Xenon-based gas mixture ; Tracking ; Ionisation energy loss ; dE/dx ; TR ; Electron-pion identification ; Neural network ; Trigger01 natural sciencesParticle identificationdesign [detector]ALICEDetectors and Experimental Techniquesmomentum resolutionNuclear Experimentphysics.ins-detInstrumentationPhysicsPROTOTYPESLarge Hadron Collidertransition radiation detector; multi-wire proportional drift chamber;; fibre/foam sandwich radiator; Xenon-based gas mixture; tracking;; Ionisation energy loss; dE/dx; TR; electron-pion identification; Neural; network; trigger; COLLIDING BEAM EXPERIMENT; ELECTRON IDENTIFICATION; DRIFT CHAMBERS; TRD; PROTOTYPES; ENERGY-LOSS; GEV/C; COLLISIONS; PIONStrack data analysisTrackingPIONSDetectorVDP::Kjerne- og elementærpartikkelfysikk: 431Instrumentation and Detectors (physics.ins-det)trackingtransition radiation detector:Mathematics and natural scienses: 400::Physics: 430::Nuclear and elementary particle physics: 431 [VDP]ddc:PRIRODNE ZNANOSTI. Fizika.Xenon-based gas mixtureTransition radiation detector:Nuclear and elementary particle physics: 431 [VDP]VDP::Nuclear and elementary particle physics: 431GEV/Cmulti-wire proportional drift chamberperformanceParticle physicsNuclear and High Energy PhysicsCOLLISIONSelectron-pion identificationneural networkInstrumentationFOS: Physical sciencesTransition radiation detector; Multi-wire proportional drift chamber; Fibre/foam sandwich radiator; Xenon-based gas mixture; Tracking; Ionisation energy loss; dE/dx; TR; Electron-pion identification; Neural network; Trigger114 Physical sciencesMomentumNuclear physicsionisation energy loss0103 physical sciencesdE/dxDRIFT CHAMBERSdE/dx Electron-pion identification Fibre/foam sandwich radiator Ionisation energy loss Multi-wire proportional drift chamber Neural network TR Tracking Transition radiation detector Trigger Xenon-based gas mixture Nuclear and High Energy Physics Instrumentation.ddc:530[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]seuranta010306 general physicsdetector: designNuclear and High Energy PhysicNeuralCOLLIDING BEAM EXPERIMENTTRD PROTOTYPESelectron: particle identificationta114010308 nuclear & particles physics:Matematikk og naturvitenskap: 400::Fysikk: 430::Kjerne- og elementærpartikkelfysikk: 431 [VDP]fibre/foam sandwich radiatortriggercalibrationNATURAL SCIENCES. Physics.Neural networkdE/dx; Electron-pion identification; Fibre/foam sandwich radiator; Ionisation energy loss; Multi-wire proportional drift chamber; Neural network; TR; Tracking; Transition radiation detector; Trigger; Xenon-based gas mixtureTriggerdE/dx; Electron-pion identification; Fibre/foam sandwich radiator; Ionisation energy loss; Multi-wire proportional drift chamber; Neural network; TR; Tracking; Transition radiation detector; Trigger; Xenon-based gas mixture; Nuclear and High Energy Physics; InstrumentationnetworkELECTRON IDENTIFICATIONTRDHigh Energy Physics::ExperimentALICE (propellant)ENERGY-LOSSNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

Kaon femtoscopy in Pb-Pb collisions at √sNN=2.76 TeV

2017

We present the results of three-dimensional femtoscopic analyses for charged and neutral kaons recorded by ALICE in Pb-Pb collisions at √ s NN = 2.76 TeV. Femtoscopy is used to measure the space-time characteristics of particle production from the effects of quantum statistics and final-state interactions in two-particle correlations. Kaon femtoscopy is an important supplement to that of pions because it allows one to distinguish between different model scenarios working equally well for pions. In particular, we compare the measured three-dimensional kaon radii with a purely hydrodynamical calculation and a model where the hydrodynamic phase is followed by a hadronic rescattering stage. The…

:Kjerne- og elementærpartikkelfysikk: 431 [VDP]Pb-PbHadronNuclear TheoryPb-Pb collisionshiukkasfysiikkaHEAVY-ION COLLISIONSPPCOLLABORATION7. Clean energy01 natural sciencesParticle identificationHYDRODYNAMICSALICEDEPENDENCENuclear ExperimentPhysicsCOULOMB CORRECTIONSTime projection chamberLarge Hadron ColliderVDP::Kjerne- og elementærpartikkelfysikk: 431PRIRODNE ZNANOSTI. Fizika.:Nuclear and elementary particle physics: 431 [VDP]VDP::Nuclear and elementary particle physics: 431BOSE-EINSTEIN CORRELATIONSTransverse massLHCkaonParticle physicsNuclear and High Energy PhysicskaonsNuclear physicsINTERFEROMETRYPionfemtoscopy0103 physical sciencesNuclear and High Energy Physics; ALICE; LHCPARTICLESparticle physics010306 general physicsScalingNuclear and High Energy Physicta114010308 nuclear & particles physics2.76TeVHEAVY-ION COLLISIONS; BOSE-EINSTEIN CORRELATIONS; COULOMB CORRECTIONS; INTERFEROMETRY; MATTER; PP; COLLABORATION; HYDRODYNAMICS; DEPENDENCE; PARTICLESBose–Einstein correlationsNATURAL SCIENCES. Physics.High Energy Physics::ExperimentMATTERkaon femtoscopy Pb-Pb 2.76TeV
researchProduct

Elliptic Flow in Pb-Pb Collisions at

2017

We report a precise measurement of the J/ψ elliptic flow in Pb-Pb collisions at sNN=5.02  TeV with the ALICE detector at the LHC. The J/ψ mesons are reconstructed at midrapidity (|y|<0.9) in the dielectron decay channel and at forward rapidity (2.5<y<4.0) in the dimuon channel, both down to zero transverse momentum. At forward rapidity, the elliptic flow v2 of the J/ψ is studied as a function of the transverse momentum and centrality. A positive v2 is observed in the transverse momentum range 2<pT<8  GeV/c in the three centrality classes studied and confirms with higher statistics our earlier results at sNN=2.76  TeV in semicentral collisions. At midrapidity, the J/ψ  v2 is investigated as …

QuarkPhysicsMeson010308 nuclear & particles physicsElliptic flowGeneral Physics and AstronomyQuarkonium01 natural sciencesCharm quarkNuclear physicsMomentum0103 physical sciencesQuark–gluon plasmaHigh Energy Physics::ExperimentRapidityNuclear Experiment010306 general physics
researchProduct