0000000000959274

AUTHOR

Elmer Andrés Fernández

showing 1 related works from this author

Segmentation-Free Estimation of Aortic Diameters from MRI Using Deep Learning

2021

Accurate and reproducible measurements of the aortic diameters are crucial for the diagnosis of cardiovascular diseases and for therapeutic decision making. Currently, these measurements are manually performed by healthcare professionals, being time consuming, highly variable, and suffering from lack of reproducibility. In this work we propose a supervised deep-learning method for the direct estimation of aortic diameters. The approach is devised and tested over 100 magnetic resonance angiography scans without contrast agent. All data was expert-annotated at six aortic locations typically used in clinical practice. Our approach makes use of a 3D+2D convolutional neural network (CNN) that ta…

Reproducibilitymedicine.diagnostic_testComputer sciencebusiness.industryDeep learningMagnetic resonance imagingPattern recognitionConvolutional neural networkAutomationMagnetic resonance angiographymedicineSegmentationArtificial intelligenceAortic diameterbusiness
researchProduct