0000000000960165
AUTHOR
Agnieszka A. Pilarska
Modelling the Interaction between Air Pollutant Emissions and Their Key Sources in Poland
The main purpose of this study is to investigate the relationships between key sources of air pollutant emissions (sources of energy production, factories which are particularly harmful to the environment, the fleets of cars, environmental protection expenditure) and the main environmental air pollution (SO2, NOx, CO and PM) in Poland. Models based on MLP neural networks were used as predictive models. Global sensitivity analysis was used to demonstrate the significant impact of individual network input variables on the output variable. To verify the effectiveness of the models created, the actual data were compared with the data obtained through modelling. Projected courses of changes in t…
Neural Classification of Compost Maturity by Means of the Self-Organising Feature Map Artificial Neural Network and Learning Vector Quantization Algorithm
Self-Organising Feature Map (SOFM) neural models and the Learning Vector Quantization (LVQ) algorithm were used to produce a classifier identifying the quality classes of compost, according to the degree of its maturation within a period of time recorded in digital images. Digital images of compost at different stages of maturation were taken in a laboratory. They were used to generate an SOFM neural topological map with centres of concentration of the classified cases. The radial neurons on the map were adequately labelled to represent five suggested quality classes describing the degree of maturation of the composted organic matter. This enabled the creation of a neural separator classify…