0000000000962536

AUTHOR

C. Andreoiu

Coulomb excitation of the |Tz|=1/2, A=23 mirror pair

Background: Electric-quadrupole (E2) strengths relate to the underlying quadrupole deformation of a nucleus and present a challenge for many nuclear theories. Mirror nuclei in the vicinity of the line of N=Z represent a convenient laboratory for testing deficiencies in such models, making use of the isospin symmetry of the systems. Purpose: Uncertainties associated with literature E2 strengths in 23Mg are some of the largest in Tz=∣∣12∣∣ nuclei in the sd shell. The purpose of the present paper is to improve the precision with which these values are known, to enable better comparison with theoretical models. Methods: Coulomb-excitation measurements of 23Mg and 23Na were performed at the TRIU…

research product

Rich band structure and multiple long-lived isomers in the odd-odd 118Cs nucleus

One of the largest sets of collective excitations built on two-quasiparticle configurations in odd-odd nuclei of the proton-rich A≈120 mass region is reported in 118Cs. Several new rotational bands and long-lived isomers have been identified. The 8+ bandhead of the πh11/2⊗νh11/2 band is a short-lived isomer with a half-life in the nanosecond range, while the 7+ state below it is a long-lived isomer with a half-life of T1/2=0.55(6)μs. Two other long-lived isomers have been identified: a 66-keV transition detected at the MARA focal plane depopulates one of them, indicating a half-life in the microsecond range, while no depopulating transitions have been identified for the other, indicating a …

research product

Isospin symmetry in $B(E2)$ values: Coulomb excitation study of ${}^{21}$Mg

The $T_z$~=~$-\frac{3}{2}$ nucleus ${}^{21}$Mg has been studied by Coulomb excitation on ${}^{196}$Pt and ${}^{110}$Pd targets. A 205.6(1)-keV $\gamma$-ray transition resulting from the Coulomb excitation of the $\frac{5}{2}^+$ ground state to the first excited $\frac{1}{2}^+$ state in ${}^{21}$Mg was observed for the first time. Coulomb excitation cross-section measurements with both targets and a measurement of the half-life of the $\frac{1}{2}^+$ state yield an adopted value of $B(E2;\frac{5}{2}^+\rightarrow\frac{1}{2}^+)$~=~13.3(4)~W.u. A new excited state at 1672(1)~keV with tentative $\frac{9}{2}^+$ assignment was also identified in ${}^{21}$Mg. This work demonstrates large difference…

research product

Chirality of 135 Nd reexamined : Evidence for multiple chiral doublet bands

One new pair of positive-parity chiral doublet bands have been identified in the odd-A nucleus 135Nd which together with the previously reported negative-parity chiral doublet bands constitute a third case of multiple chiral doublet (MχD) bands in the A ≈ 130 mass region. The properties of the MχD bands are well reproduced by constrained covariant density functional theory and particle rotor model calculations. The newly observed MχD bands in 135Nd represents an important milestone in supporting the existence of MχD in nuclei. peerReviewed

research product

Kr369660 –Low- Z Boundary of the Island of Deformation at N=60

Prompt γ-ray spectroscopy of the neutron-rich $^{96}$Kr, produced in transfer- and fusion-induced fission reactions, has been performed using the combination of the Advanced Gamma Tracking Array and the VAMOS++ spectrometer. A second excited state, assigned to $J^π$ = $4^+$, is observed for the first time, and a previously reported level energy of the first 2+ excited state is confirmed. The measured energy ratio R4/2 = E($4^+$)/E($2^+$) = 2.12(1) indicates that this nucleus does not show a well-developed collectivity contrary to that seen in heavier N = 60 isotones. This new measurement highlights an abrupt transition of the degree of collectivity as a function of the proton number at Z = …

research product

Neutron excitations in 119Ba

The neutron-deficient 119Ba nucleus has been studied using the 58Ni(64Zn,2pn) reaction and the JUROGAM 3 γ-ray detector array coupled to the MARA recoil-mass separator setup. One new rotational band and several low-lying states are newly identified. A half-life of T1/2=0.36(2)μs has been measured for the 5/2− bandhead of the νh11/2 band. The two previously known rotational bands are confirmed, except for the higher part of the +1/2 signature partner of the positive-parity band. Configurations are assigned based on the analysis of the observed quasiparticle alignments whose nature is unveiled by the calculations using the particle number conserving cranked shell model. peerReviewed

research product

First Evidence of Axial Shape Asymmetry and Configuration Coexistence in 74Zn : Suggestion for a Northern Extension of the N = 40 Island of Inversion

The excited states of N=44 74Zn were investigated via γ-ray spectroscopy following 74Cu β decay. By exploiting γ−γ angular correlation analysis, the 2+2, 3+1, 0+2, and 2+3 states in 74Zn were firmly established. The γ-ray branching and E2/M1 mixing ratios for transitions deexciting the 2+2, 3+1, and 2+3 states were measured, allowing for the extraction of relative B(E2) values. In particular, the 2+3→0+2 and 2+3→4+1 transitions were observed for the first time. The results show excellent agreement with new microscopic large-scale shell-model calculations, and are discussed in terms of underlying shapes, as well as the role of neutron excitations across the N=40 gap. Enhanced axial shape asy…

research product

Signatures of enhanced octupole correlations at high spin in 136Nd

Experimental signatures of moderately enhanced octupole correlations at high spin in 136Nd are indicated for the first time. The extracted dipole moments of two negative-parity bands are only two times smaller than those of the lanthanide nuclei with N≈90 which present well-established octupole correlations. Calculations using the cranked quasiparticle random phase approximation and a model of quadrupole-octupole rotations with octupole vibrations reveal the structure of the bands and the enhanced octupole correlations at high spin in 136Nd. peerReviewed

research product

Complete set of proton excitations in 119Cs

The very neutron-deficient strongly deformed 119Cs nucleus has been studied using the 58Ni(64Zn,3p) reaction and the JUROGAM 3 γ-ray detector array coupled to the MARA recoil-mass separator setup. The excitation energies of all observed bands have been determined, spins and parities have been firmly assigned to most of the observed states. The previously known and the newly identified rotational bands have been extended to very high spin and excitation energy. The configurations of the observed bands are discussed using the particle number conserving cranked shell model. The present study establishes the largest set of rotational bands observed in the proton-rich A≈120 mass region. peerRevi…

research product

Coulomb excitation of the $\left|T_z\right|=\frac{1}{2}$, $A=23$ mirror pair

Background: Electric-quadrupole ($E2$) strengths relate to the underlying quadrupole deformation of a nucleus and present a challenge for many nuclear theories. Mirror nuclei in the vicinity of the line of $N=Z$ represent a convenient laboratory for testing deficiencies in such models, making use of the isospin-symmetry of the systems. Purpose: Uncertainties associated with literature $E2$ strengths in \textsuperscript{23}Mg are some of the largest in $T_z=\left|\frac{1}{2}\right|$ nuclei in the $sd$-shell. The purpose of the present work is to improve the precision with which these values are known, to enable better comparison with theoretical models. Methods: Coulomb-excitation measuremen…

research product

Refined description of the positive-parity bands and the extent of octupole correlations in 120Ba

Three new negative-parity bands have been identified in 120Ba, two of them forming a strongly coupled band. The previously known negative-parity band is significantly extended to high spin, while the lower part of the yrare positive-parity band has been modified. From the analysis of the band properties and comparison with the neighboring nuclei a coherent description of all bands is achieved. In particular, a simple explanation of the evolution of the positive-parity bands at high spin is proposed, including the possible occupation of the νf7/2[541]1/2− intruder orbital. Cranked Nilsson-Strutinsky calculations reveal similar quadrupole deformations but different triaxiality of the bands, w…

research product

First Evidence of Axial Shape Asymmetry and Configuration Coexistence in $^{74}$Zn: Suggestion for a Northern Extension of the $N=40$ Island of Inversion

International audience; The excited states of $N=44$$^{74}$Zn were investigated via $\gamma$-ray spectroscopy following $^{74}$Cu $\beta$ decay. By exploiting $\gamma$-$\gamma$ angular correlation analysis, the $2_2^+$, $3_1^+$, $0_2^+$ and $2_3^+$ states in $^{74}$Zn were firmly established. The $\gamma$-ray branching and $E2/M1$ mixing ratios for transitions de-exciting the $2_2^+$, $3_1^+$ and $2_3^+$ states were measured, allowing for the extraction of relative $B(E2)$ values. In particular, the $2_3^+ \to 0_2^+$ and $2_3^+ \to 4_1^+$ transitions were observed for the first time. The results show excellent agreement with new microscopic large-scale shell-model calculations, and are disc…

research product

Improved measurement of the 02+→01+ E0 transition strength for 72Se using the SPICE spectrometer

The selenium isotopes lie at the heart of a tumultuous region of the nuclear chart where shape coexistence effects grapple with neutron-proton pairing correlations, triaxiality, and the impending proton drip line. In this work, a study of 72Se by internal conversion electron and γ-ray spectroscopy was undertaken with the SPICE and TIGRESS arrays. New measurements of the branching ratio and lifetime of the 02+ state were performed, yielding a determination of ρ2(E0;02+→01+)=29(3) milliunits. Two-state mixing calculations were performed that highlighted the importance of interpretation of such E0 strength values in the context of shape coexistence. peerReviewed

research product

High K bands in mid-supershell nuclei

The spectrum of prompt conversion electrons emitted by excited 254No nuclei has been measured, revealing discrete lines arising from transitions within the ground state band. A striking feature is a broad distribution that peaks near 100 keV and comprises high multiplicity electron cascades, probably originating from M1 transitions within rotational bands built on high K states. Evidence for the existence of isomeric states in 254No is presented. peerReviewed

research product

Evidence against the wobbling nature of low-spin bands in 135Pr

International audience; The electromagnetic character of the ΔI=1 transitions connecting the 1- to 0-phonon and the 2- to 1-phonon wobbling bands should be dominated by an E2 component, due to the collective motion of the entire nuclear charge. In the present work it is shown, based on combined angular correlation and linear polarization measurements, that the mixing ratios of all analyzed connecting transitions between low-lying bands in 135Pr interpreted as 0-, 1-, and 2-phonon wobbling bands, have absolute values smaller than one. This indicates predominant M1 magnetic character, which is incompatible with the proposed wobbling nature. All experimental observables are instead in good agr…

research product

Tilted precession bands in $^{135}$Nd

International audience; Two new excited bands built on the πh11/2 configuration have been identified in Nd135 in addition to the known πh11/2 band. The energy spectra of the excited bands and the available electromagnetic transition probabilities are in good agreement with theoretical results obtained using quasiparticle-plus-triaxial-rotor model calculations. The properties of the bands identify them as tilted precession bands instead of wobbling bands. Our results give a new insight into the interpretation of the low-lying bands in odd-A mass nuclei, and can stimulate future studies to address the nuclear triaxiality.

research product

Evolution from γ-soft to stable triaxiality in 136Nd as a prerequisite of chirality

The level structure of 136Nd has been investigated using the 100Mo(40Ar, 4n) reaction and the JUROGAM II+RITU+GREAT setup. The level scheme has been extended significantly. Many new bands have been identified both at low and high spin, among which are five nearly degenerate bands interpreted as chiral partners. Excitation energies, spins, and parities of the previously known bands are revised and firmly established, and some previously known bands have been revised. Configurations are assigned to the observed bands based on cranked Nilsson-Strutinsky calculations. The band structure of 136Nd is now clarified and the various types of single-particle and collective excitations are well unders…

research product

Pseudospin Symmetry and Microscopic Origin of Shape Coexistence in the Ni78 Region: A Hint from Lifetime Measurements

Lifetime measurements of excited states of the light N = 52 isotones 88 Kr , 86 Se , and 84 Ge have been performed, using the recoil distance Doppler shift method and VAMOS and AGATA spectrometers for particle identification and gamma spectroscopy, respectively. The reduced electric quadrupole transition probabilities B ( E 2 ; 2 + → 0 + ) and B ( E 2 ; 4 + → 2 + ) were obtained for the first time for the hard-to-reach 84 Ge . While the B ( E 2 ; 2 + → 0 + ) values of 88 Kr , 86 Se saturate the maximum quadrupole collectivity offered by the natural valence ( 3 s , 2 d , 1 g 7 / 2 , 1 h 11 / 2 ) space of an inert 78 Ni core, the value obtained for 84 Ge largely exceeds it, suggesting that sh…

research product