0000000000964578
AUTHOR
P. Papka
The key reactions in Stellar helium burning: 12C(α,γ)16O and 22Ne(α,n)25Mg
Abstract The excitation functions of 12C(α,γ)16O and 22Ne(α,n)25Mg have been determined with a yet unequaled experimental sensitivity of 10−11 b. From γ-angular distributions the SE1-and SE2-factors for 12C(α,γ)16O have been deduced and extrapolated into the range of helium burning temperatures using the R-matrix method. An improved reaction rate has been calculated: NA〈σν〉=(7.9±2.5)x10−15cm3(mols)−1 at T9 = 0.2. For a more precise extrapolation the excitation function has to be measured with better statistics. Therefore a new experiment on 12C(α,γ)16O with a better suited setup has been started recently. The accuracy of the 22Ne(α,n)25Mg reaction rate could be improved considerably compare…
β and γ bands in N = 88, 90, and 92 isotones investigated with a five-dimensional collective Hamiltonian based on covariant density functional theory : Vibrations, shape coexistence, and superdeformation
A comprehensive systematic study is made for the collective β and γ bands in even-even isotopes with neutron numbers N=88 to 92 and proton numbers Z=62(Sm) to 70 (Yb). Data, including excitation energies, B(E0) and B(E2) values, and branching ratios from previously published experiments are collated with new data presented for the first time in this study. The experimental data are compared to calculations using a five-dimensional collective Hamiltonian (5DCH) based on the covariant density functional theory (CDFT). A realistic potential in the quadrupole shape parameters V(β,γ) is determined from potential energy surfaces (PES) calculated using the CDFT. The parameters of the 5DCH are fixe…