Lattice Instability and Competing Spin Structures in the Double Perovskite Insulator Sr2FeOsO6
The semiconductor Sr2FeOsO6, depending on temperature, adopts two types of spin structures that differ in the spin sequence of ferrimagnetic iron - osmium layers along the tetragonal c-axis. Neutron powder diffraction experiments, 57Fe M\"ossbauer spectra, and density-functional theory calculations suggest that this behavior arises because a lattice instability resulting in alternating iron-osmium distances fine-tunes the balance of competing exchange interactions. Thus, Sr2FeOsO6 is an example for a double perovskite, in which the electronic phases are controlled by the interplay of spin, orbital, and lattice degrees of freedom.