0000000000968513
AUTHOR
Assunta Pelosi
Synaptic Phospholipid Signaling Modulates Axon Outgrowth via Glutamate-dependent Ca2+-mediated Molecular Pathways.
Abstract Altered synaptic bioactive lipid signaling has been recently shown to augment neuronal excitation in the hippocampus of adult animals by activation of presynaptic LPA2-receptors leading to increased presynaptic glutamate release. Here, we show that this results in higher postsynaptic Ca2+ levels and in premature onset of spontaneous neuronal activity in the developing entorhinal cortex. Interestingly, increased synchronized neuronal activity led to reduced axon growth velocity of entorhinal neurons which project via the perforant path to the hippocampus. This was due to Ca2+-dependent molecular signaling to the axon affecting stabilization of the actin cytoskeleton. The spontaneous…
In‐depth protein profiling of the postsynaptic density from mouse hippocampus using data‐independent acquisition proteomics
Located at neuronal terminals, the postsynaptic density (PSD) is a highly complex network of cytoskeletal scaffolding and signaling proteins responsible for the transduction and modulation of glutamatergic signaling between neurons. Using ion-mobility enhanced data-independent label-free LC-MS/MS, we established a reference proteome of crude synaptosomes, synaptic junctions, and PSD derived from mouse hippocampus including TOP3-based absolute quantification values for identified proteins. The final dataset across all fractions comprised 49 491 peptides corresponding to 4558 protein groups. Of these, 2102 protein groups were identified in highly purified PSD in at least two biological replic…