0000000000969499
AUTHOR
Tammo Krause
A spiking network for body size learning inspired by the fruit fly
The concept of peripersonal space is an interesting research topics for psychologists, neurobiologists and for robotic applications. A living being can learn the representation of its own body to take the correct behavioral decision when interacting with the world. To transfer these important learning mechanisms on bio-robots, simple and efficient solutions can be found in the insect world. In this paper a neural-based model for body-size learning is proposed taking into account the results obtained in experiments with fruit flies. Simulations and experimental results on a roving platform are reported and compared with the biological counterpart.
Higher Brain Centers for Intelligent Motor Control in Insects
The higher control of orientation, walking and gap climbing behavior in the fruit fly Drosophila is studied by neurogenetic means. An insect brain model is presented for the control of object approaches. The model comprises learning abilities of flies at two different time scales. A short-term orientation memory allows for the continued approach of objects that disappeared from sight. Flies can come back to the still invisible object even after a detour to a distracter object. A long-term memory allows for the storage of experience with particular types of objects in order to trigger avoidance behavior in the future instead of the default approach behavior. Moreover, we provide evidence tha…
Integrative Biomimetics of Autonomous Hexapedal Locomotion
Despite substantial advances in many different fields of neurorobotics in general, and biomimetic robots in particular, a key challenge is the integration of concepts: to collate and combine research on disparate and conceptually disjunct research areas in the neurosciences and engineering sciences. We claim that the development of suitable robotic integration platforms is of particular relevance to make such integration of concepts work in practice. Here, we provide an example for a hexapod robotic integration platform for autonomous locomotion. In a sequence of six focus sections dealing with aspects of intelligent, embodied motor control in insects and multipedal robots-ranging from comp…
Drosophila Acquires a Long-Lasting Body-Size Memory from Visual Feedback
Summary Grasping an object or crossing a trench requires the integration of information on the operating distance of our limbs with precise distance estimation. The reach of our hands and step size of our legs are learned by the visual feedback we get during our actions. This implicit knowledge of our peripersonal space is first acquired during infancy but will be continuously updated throughout our whole life [ 1 ]. In contrast, body size of holometabolous insects does not change after metamorphosis; nevertheless, they do have to learn their body reaches at least once. The body size of Drosophila imagines can vary by about 15% depending on environmental factors like food quality and temper…