0000000000970231
AUTHOR
H. Varguet
Quantum emitter states dressed by the plasmon modes of a metal nanoparticle in the strong coupling regim
The quantum control of emitters is a key issue for quantum information processing at the nanoscale. This generally necessitates the strong coupling of emitters to a high Q-cavity for efficient manipulation of the atoms and field dynamics (cavity quantum electrodynamics or cQED). Since almost a decade, strong efforts are put to transpose cQED concepts to plasmonics in order to profit of the strong mode confinement of surface plasmons polaritons. Despite the intrinsic presence of lossy channels leading to strong decoherence in plasmonics systems, it has been experimentally proven that it is possible to reach the strong coupling regim [1].
Dressed states of a quantum emitter strongly coupled to a metal nanoparticle
Hybrid molecule-plasmonic nanostructures have demonstrated their potential for surface enhanced spectroscopies, sensing, or quantum control at the nanoscale. In this Letter, we investigate the strong coupling regime and explicitly describe the hybridization between the localized plasmons of a metal nanoparticle and the excited state of a quantum emitter, offering a simple and precise understanding of the energy exchange in full analogy with cavity quantum electrodynamics treatment and a dressed atom picture. Both near-field emission and far-field radiation are discussed, revealing the richness of such optical nanosources.