0000000000970385
AUTHOR
J. Wittmer
On the Adsorption Process in Polymer Brushes: A Monte Carlo Study
The adsorption process of the single polymer chain in a polymer brush of varying surface coverages is studied by means of Monte Carlo simulations of the bond-fluctuation lattice model. Only the end monomers can adsorb at the grafting surface, whereas inner monomers interact repulsively with it. The brush builds up a steric hindrance which forces the penetrating polymer to stretch strongly and which is responsible for small adsorption probabilities at surface coverages close to the overlap density. The final step of the adsorption process is determined by a fluctuation of the end monomer around its average position, which is comparable to the initial step of the desorption process.
The intermediate coherent scattering function of entangled polymer melts: a Monte Carlo test of des Cloizeaux' theory
Using the bond fluctuation model for flexible polymer chains in a dense melt the intermediate coherent scattering function for chains containing N=200 monomers is calculated and interpreted in terms of a recent theory of des Cloizeaux. The theory yields an explicit description for the crossover from the Rouse model to the regime where reptation prevails, for the limit N→∞. While the Monte Carlo data are qualitatively compatible with this description, an accurate estimation of the tube diameter is prevented due to the onset of a diffusive decay of the scattering function, not included in the theory. For a full quantitative analysis of the Monte Carlo data (as well as of experiments on chains…