0000000000970523

AUTHOR

S. Lechner

showing 3 related works from this author

Laser Spectroscopy of Neutron-Rich Tin Isotopes: A Discontinuity in Charge Radii across the N=82 Shell Closure

2019

Physical review letters 122(19), 192502 (2019). doi:10.1103/PhysRevLett.122.192502

Physics MultidisciplinaryGeneral Physics and Astronomychemistry.chemical_elementLINE[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciences530Effective nuclear chargeFORCECharge radiusDEPENDENCEMOMENTS0103 physical sciencesIsotopes of tinNeutronddc:530Nuclear Physics - Experiment010306 general physicsSpectroscopyNuclear ExperimentComputingMilieux_MISCELLANEOUSPhysicsScience & TechnologyNUCLEIPhysicsddc:chemistryPairingPhysical SciencesAtomic physicsTinNuclear density
researchProduct

Probing the single-particle behavior above Sn132 via electromagnetic moments of Sb133,134 and N=82 isotones

2021

Magnetic and quadrupole moments of the $7/{2}^{+}$ ground state in $^{133}\mathrm{Sb}$ and the $({7}^{\ensuremath{-}})$ isomer in $^{134}\mathrm{Sb}$ have been measured by collinear laser spectroscopy to investigate the single-particle behavior above the doubly magic nucleus $^{132}\mathrm{Sn}$. The comparison of experimental data of the $7/{2}^{+}$ states in $^{133}\mathrm{Sb}$ and neighboring $N=82$ isotones to shell-model calculations reveals the sensitivity of magnetic moments to the splitting of the spin-orbit partners $\ensuremath{\pi}0{g}_{9/2}$ and $\ensuremath{\pi}0{g}_{7/2}$ across the proton shell closure at $Z=50$. In contrast, quadrupole moments of the $N=82$ isotones are insen…

PhysicsValence (chemistry)Magnetic momentProton010308 nuclear & particles physicsNuclear TheoryCoupling (probability)01 natural sciences0103 physical sciencesQuadrupoleNeutronSensitivity (control systems)Atomic physics010306 general physicsGround statePhysical Review C
researchProduct

Nuclear Moments of Germanium Isotopes around $N$ = 40

2020

Collinear laser spectroscopy measurements were performed on $^{69,71,73}$Ge isotopes ($Z = 32$) at ISOLDE-CERN. The hyperfine structure of the $4s^2 4p^2 \, ^3P_1 \rightarrow 4s^2 4p 5s \, ^3P_1^o$ transition of the germanium atom was probed with laser light of 269 nm, produced by combining the frequency-mixing and frequency-doubling techniques. The hyperfine fields for both atomic levels were calculated using state-of-the-art atomic relativistic Fock-space coupled-cluster calculations. A new $^{73}$Ge quadrupole moment was determined from these calculations and previously measured precision hyperfine parameters, yielding $Q_{\rm s}$ = $-$0.198(4) b, in excellent agreement with the literatu…

Nuclear Theory (nucl-th)nucl-thNuclear TheoryNuclear Physics - TheoryFOS: Physical sciencesNuclear Physics - ExperimentPhysics::Atomic PhysicsNuclear Experiment (nucl-ex)nucl-exNuclear Experiment
researchProduct