0000000000970523
AUTHOR
S. Lechner
Laser Spectroscopy of Neutron-Rich Tin Isotopes: A Discontinuity in Charge Radii across the N=82 Shell Closure
Physical review letters 122(19), 192502 (2019). doi:10.1103/PhysRevLett.122.192502
Nuclear Moments of Germanium Isotopes around $N$ = 40
Collinear laser spectroscopy measurements were performed on $^{69,71,73}$Ge isotopes ($Z = 32$) at ISOLDE-CERN. The hyperfine structure of the $4s^2 4p^2 \, ^3P_1 \rightarrow 4s^2 4p 5s \, ^3P_1^o$ transition of the germanium atom was probed with laser light of 269 nm, produced by combining the frequency-mixing and frequency-doubling techniques. The hyperfine fields for both atomic levels were calculated using state-of-the-art atomic relativistic Fock-space coupled-cluster calculations. A new $^{73}$Ge quadrupole moment was determined from these calculations and previously measured precision hyperfine parameters, yielding $Q_{\rm s}$ = $-$0.198(4) b, in excellent agreement with the literatu…
Probing the single-particle behavior above Sn132 via electromagnetic moments of Sb133,134 and N=82 isotones
Magnetic and quadrupole moments of the $7/{2}^{+}$ ground state in $^{133}\mathrm{Sb}$ and the $({7}^{\ensuremath{-}})$ isomer in $^{134}\mathrm{Sb}$ have been measured by collinear laser spectroscopy to investigate the single-particle behavior above the doubly magic nucleus $^{132}\mathrm{Sn}$. The comparison of experimental data of the $7/{2}^{+}$ states in $^{133}\mathrm{Sb}$ and neighboring $N=82$ isotones to shell-model calculations reveals the sensitivity of magnetic moments to the splitting of the spin-orbit partners $\ensuremath{\pi}0{g}_{9/2}$ and $\ensuremath{\pi}0{g}_{7/2}$ across the proton shell closure at $Z=50$. In contrast, quadrupole moments of the $N=82$ isotones are insen…