0000000000971672

AUTHOR

A. Bulgarelli

showing 5 related works from this author

Sensitivity of the Cherenkov Telescope Array to spectral signatures of hadronic PeVatrons with application to Galactic Supernova Remnants

2023

The local Cosmic Ray (CR) energy spectrum exhibits a spectral softening at energies around 3~PeV. Sources which are capable of accelerating hadrons to such energies are called hadronic PeVatrons. However, hadronic PeVatrons have not yet been firmly identified within the Galaxy. Several source classes, including Galactic Supernova Remnants (SNRs), have been proposed as PeVatron candidates. The potential to search for hadronic PeVatrons with the Cherenkov Telescope Array (CTA) is assessed. The focus is on the usage of very high energy $\gamma$-ray spectral signatures for the identification of PeVatrons. Assuming that SNRs can accelerate CRs up to knee energies, the number of Galactic SNRs whi…

Cherenkov Telescope ArrayGamma rays: generalstatistical [methods]energy spectrumFOS: Physical sciencesVHESettore FIS/05 - Astronomia E Astrofisicacosmic raysMethods: data analysissupernovadata analysis [methods][PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Cosmic raysInstrumentation and Methods for Astrophysics (astro-ph.IM)Cherenkov Telescope Arra ; alactic Supernova Remnants ; PeVatrons ;Methods: statisticalgalactic PeVatronsHigh Energy Astrophysical Phenomena (astro-ph.HE)emission spectrum) supernovae: general [(stars]Astronomy and AstrophysicssensitivityobservatoryGalactic PeVatronscosmic radiationspectralgalaxyhadron(Stars:) supernovae: generalAstrophysics - High Energy Astrophysical PhenomenaAstrophysics - Instrumentation and Methods for Astrophysics[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]statisticalgeneral [gamma rays]signature
researchProduct

Enhanced detection of terrestrial gamma-ray flashes by AGILE

2015

Abstract At the end of March 2015 the onboard software configuration of the Astrorivelatore Gamma a Immagini Leggero (AGILE) satellite was modified in order to disable the veto signal of the anticoincidence shield for the minicalorimeter instrument. The motivation for such a change was the understanding that the dead time induced by the anticoincidence prevented the detection of a large fraction of Terrestrial Gamma‐Ray Flashes (TGFs). The configuration change was highly successful resulting in an increase of one order of magnitude in TGF detection rate. As expected, the largest fraction of the new events has short duration (<100 μs), and part of them has simultaneous association with light…

High Energy Astrophysical Phenomena (astro-ph.HE)Solar Physics Astrophysics and AstronomyAtmospheric ScienceFOS: Physical sciencesterrestrial gamma-ray flashesterrestrial gamma‐ray flashesatmospheric electricity; terrestrial gamma-ray flashesTGFSpace Physics (physics.space-ph)LightningResearch Lettersatmospheric electricityPhysics - Space PhysicsAtmospheric ProcessesResearch Letter:Matematikk og Naturvitenskap: 400 [VDP]Instruments and TechniquesAGILE TGFAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Background Rejection of Charged Particles in the Simbol-X Telescope: Preliminary Study of Protons Scattering

2009

X-ray telescopes equipped with focusing optics in high eccentric orbit, as e.g. Newton-XMM and Chandra, showed a degradation of the detector performance and an important increase of the noise due to soft protons with energy between a few tens of keV and a few MeV, that are focused on the detector through the mirror module. It should be noted that the focusing of the protons by Wolter optics was an unexpected phenomenon. In Simbol-X a magnetic diverter will be implemented to deflect protons, in order to reduce the flux of charged particles impinging upon the focal plane. Obviously the design of the diverter should take into consideration the protons distribution at the exit of the mirror mod…

Physicsbusiness.industryScatteringAstrophysics::High Energy Astrophysical PhenomenaDetectorX-ray opticsCharged particleParticle detectorlaw.inventionTelescopeSettore FIS/05 - Astronomia E AstrofisicaOpticsCardinal pointlawX- and gamma-ray telescopes and instrumentation X-ray beams and x-ray optics Lenses prisms and mirrorsbusinessNoise (radio)AIP Conference Proceedings
researchProduct

The NHXM observatory

2011

Exploration of the X-ray sky has established X-ray astronomy as a fundamental astrophysical discipline. While our knowledge of the sky below 10 keV has increased dramatically (∼8 orders of magnitude) by use of grazing incidence optics, we still await a similar improvement above 10 keV, where to date only collimated instruments have been used. Also ripe for exploration is the field of X-ray polarimetry, an unused fundamental tool to understand the physics and morphology of X-ray sources. Here we present a novel mission, the New Hard X-ray Mission (NHXM) that brings together for the first time simultaneous high-sensitivity, hard-X-ray imaging, broadband spectroscopy and polarimetry. NHXM will…

Black-holesAcceleration mechanismCosmic Visionmedia_common.quotation_subjectPolarimetry7. Clean energy01 natural sciencesMissionsCosmologyPhysical cosmologyNon-thermal emissionAcceleration mechanism; Accretion physics; Black-holes; Compact objects; Cosmology; Missions; Non-thermal emission; X-ray imaging; X-ray polarimetry; Astronomy and Astrophysics; Space and Planetary ScienceObservatory0103 physical sciencesBroadbandX-ray polarimetry010303 astronomy & astrophysicsCompact objectsmedia_commonPhysics010308 nuclear & particles physicsX-ray imagingVegaAstronomyAstronomy and AstrophysicsAccretion physicsCosmologySkySpace and Planetary ScienceExperimental Astronomy
researchProduct

Sensitivity of the Cherenkov Telescope Array to a dark matter signal from the Galactic centre

2021

Full list of authors: Acharyya, A.; Adam, R.; Adams, C.; Agudo, I.; Aguirre-Santaella, A.; Alfaro, R.; Alfaro, J.; Alispach, C.; Aloisio, R.; Alves Batista, R.; Amati, L.; Ambrosi, G.; Angüner, E. O.; Antonelli, L. A.; Aramo, C.; Araudo, A.; Armstrong, T.; Arqueros, F.; Asano, K.; Ascasíbar, Y. Ashley, M.; Balazs, C.; Ballester, O.; Baquero Larriva, A.; Barbosa Martins, V.; Barkov, M.; Barres de Almeida, U.; Barrio, J. A.; Bastieri, D.; Becerra, J.; Beck, G.; Becker Tjus, J.; Benbow, W.; Benito, M.; Berge, D.; Bernardini, E.; Bernlöhr, K.; Berti, A.; Bertucci, B.; Beshley, V.; Biasuzzi, B.; Biland, A.; Bissaldi, E.; Biteau, J.; Blanch, O.; Blazek, J.; Bocchino, F.; Boisson, C.; Bonneau Arbe…

Cherenkov Telescope ArrayMATÉRIA ESCURAscale: TeVAstronomyatmosphere [Cherenkov counter]dark matter experimentDark matter theoryenergy resolutionGamma ray experimentsParticleAstrophysicscosmic background radiation01 natural sciences7. Clean energyHigh Energy Physics - Phenomenology (hep-ph)benchmarkWIMPHESSenergy: fluxTeV [scale]relativistic [charged particle]gamma ray experimentMAGIC (telescope)Monte CarloEvent reconstructionPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Contractionspatial distributiontrack data analysisPhysicsdensity [dark matter]ClumpyAstrophysics::Instrumentation and Methods for AstrophysicsimagingHigh Energy Physics - Phenomenologydark matter experiments; dark matter theory; gamma ray experiments; galaxy morphologyDark matter experimentsFísica nuclearVERITASAstrophysics - High Energy Astrophysical PhenomenaSimulationsnoiseWIMPAstrophysics::High Energy Astrophysical PhenomenaDark mattersatelliteCosmic background radiationFOS: Physical sciencesAnnihilationdark matter: densityAstrophysics::Cosmology and Extragalactic AstrophysicsCherenkov counter: atmosphereheavy [dark matter]530annihilation [dark matter]GLASTDark matter experiments; Dark matter theory; Galaxy morphology; Gamma ray experimentscosmic radiation [p]0103 physical sciencesCherenkov [radiation]Candidatesddc:530AGNCherenkov radiationRadiative Processesthermal [cross section]010308 nuclear & particles physicsFísicadark matter: annihilationGamma-Ray SignalsCherenkov Telescope Array ; dark matter ; Galactic Center ; TeV gamma-ray astronomyAstronomy and AstrophysicsMassCherenkov Telescope Arrayradiation: CherenkovsensitivityMAGICGalaxyAstronomíadark matter: heavygamma rayp: cosmic radiation[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]correlationcharged particle: relativisticflux [energy]Galaxy morphology/dk/atira/pure/subjectarea/asjc/3100/3103galaxysupersymmetry[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]cross section: thermal
researchProduct