0000000000972211

AUTHOR

N. Masetti

showing 11 related works from this author

The 54 days orbital period of AX J1820.5-1434 unveiled by Swift

2013

The hard X-ray survey that Swift-BAT has been performing since late 2004 has provided a considerable database for a large number of sources whose hard X-ray emission was poorly known. We are exploiting the BAT survey archive to improve the temporal and spectral characterization of the Galactic hard-X-ray sources. In this letter we focus on the study of the high mass X-ray binary AX J1820.5-1434. All the data relevant to AX J1820.5-1434 have been extracted from the BAT survey archive and analyzed using a folding technique to search for periodical modulations. A broad-band spectral analysis was also performed complementing the BAT spectrum with the available Swift-XRT and XMM-Newton pointed o…

High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsSwiftAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesStatic timing analysisBinary numberAstronomy and AstrophysicsContext (language use)AstrophysicsLight curveOrbital periodSpectral linelaw.inventionTelescopeSpace and Planetary SciencelawAstrophysics - High Energy Astrophysical Phenomenacomputercomputer.programming_language
researchProduct

On the Spectral Evolution of Cygnus X-2 along its Color-Color Diagram

2002

We report on the results of a broad band (0.1-200 keV) spectral study of Cyg X-2 using two BeppoSAX observations taken in 1996 and 1997, respectively, for a total effective on-source time of ~100 ks. The color-color (CD) and hardness-intensity (HID) diagrams show that the source was in the horizontal branch (HB) and normal branch (NB) during the 1996 and 1997 observation, respectively. Five spectra were selected around different positions of the source in the CD/HID, two in the HB and three in the NB. These spectra are fit to a model consisting of a disk blackbody, a Comptonization component, and two Gaussian emission lines at ~1 keV and ~6.6 keV, respectively. The addition of a hard power-…

PhysicsAstrophysics::High Energy Astrophysical PhenomenaAstrophysics (astro-ph)FOS: Physical sciencesAstronomy and AstrophysicsColor–color diagramAstrophysicsRadiusHorizontal branchaccretion accretion disks / stars: individual: Cyg X–2 / stars: neutron / X-rays: stars / X-rays: binaries / X-rays: generalAstrophysicsSpectral lineLuminosityNOaccretionSpace and Planetary ScienceOptical depth (astrophysics)accretion disks / stars: individual: Cyg X–2 / stars: neutron / X-rays: stars / X-rays: binaries / X-rays: generalElectron temperatureEmission spectrum
researchProduct

GRB 070311: a direct link between the prompt emission and the afterglow

2007

We present prompt gamma-ray, early NIR/optical, late optical and X-ray observations of the peculiar GRB 070311 discovered by INTEGRAL, in order to gain clues on the mechanisms responsible for the prompt gamma-ray pulse as well as for the early and late multi-band afterglow of GRB 070311. We fitted with empirical functions the gamma-ray and optical light curves and scaled the result to the late time X-rays. The H-band light curve taken by REM shows two pulses peaking 80 and 140 s after the peak of the gamma-ray burst and possibly accompanied by a faint gamma-ray tail. Remarkably, the late optical and X-ray afterglow underwent a major rebrightening between 3x10^4 and 2x10^5 s after the burst …

Physicsgamma rays: bursts010308 nuclear & particles physicsAstrophysics (astro-ph)FOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsX-rays: individuals: GRB 070311Light curveAstrophysics01 natural sciencesAfterglowSpace and Planetary Sciencegamma rays: bursts; X-rays: individuals: GRB 0703110103 physical sciencesGamma-ray burst010303 astronomy & astrophysicsTime profile
researchProduct

Swift-BAT hard X-ray sky monitoring unveils the orbital period of the HMXB IGR J18219-1347

2013

IGR J18219-1347 is a hard X-ray source discovered by INTEGRAL in 2010. We have analyzed the X-ray emission of this source exploiting the BAT survey data up to March 2012 and the XRT data that include also an observing campaign performed in early 2012. The source is detected at a significance level of ~14 standard deviations in the 88-month BAT survey data, and shows a strong variability along the survey monitoring, going from high intensity to quiescent states. A timing analysis on the BAT data revealed an intensity modulation with a period of 72.46 days. The significance of this modulation is about 7 standard deviations in Gaussian statistics. We interpret it as the orbital period of the b…

PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Be starmedia_common.quotation_subjectAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsOrbital periodLight curveStandard deviationlaw.inventionTelescopeOrbitSpace and Planetary ScienceSkylawAstrophysics - High Energy Astrophysical PhenomenaIntensity modulationmedia_common
researchProduct

Swift Observations of the High-mass X-ray Binary IGR J16283-4838 unveil a 288-day Orbital Period

2013

We report on the temporal and spectral properties of the HMXB IGR J16283-4838 in the hard X-ray band. We searched the first 88 months of Swift BAT survey data for long-term periodic modulations. We also investigated the broad band (0.2--150 keV) spectral properties of IGR J16283--4838 complementing the BAT dataset with the soft X-ray data from the available Swift-XRT pointed observations. The BAT light curve of IGR J16283-4838 revealed a periodic modulation at P_o=287.6+7-1.7 days (with a significance higher than 4 standard deviations). The profile of the light curve folded at P_o shows a sharp peak lasting ~ 12 d, over a flat plateau. The long-term light curve shows also a ~300 d interval …

PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Spectral propertiesX-ray binaryBroad bandFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsOrbital periodPlateau (mathematics)Light curveSpace and Planetary ScienceHigh massAstrophysics - High Energy Astrophysical Phenomena
researchProduct

GRB 030227: The first multiwavelength afterglow of an INTEGRAL GRB

2003

We present multiwavelength observations of a gamma-ray burst detected by INTEGRAL (GRB 030227) between 5.3 hours and ~1.7 days after the event. Here we report the discovery of a dim optical afterglow (OA) that would not have been detected by many previous searches due to its faintess (R~23). This OA was seen to decline following a power law decay with index Alpha_R= -0.95 +/- 0.16. The spectral index Beta_opt/NIR yielded -1.25 +/- 0.14. These values may be explained by a relativistic expansion of a fireball (with p = 2.0) in the cooling regime. We also find evidence for inverse Compton scattering in X-rays.

PhysicsSpectral indexBurstsAstrophysics (astro-ph)Gamma raysCompton scatteringbursts [gamma rays]FOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsGamma rays ; Bursts ; Photometric ; Cosmology observationsPhotometricUNESCO::ASTRONOMÍA Y ASTROFÍSICAAstrophysicsCosmology observationsPower law:ASTRONOMÍA Y ASTROFÍSICA::Cosmología y cosmogonia [UNESCO]observations [cosmology]Afterglowphotometric [techniques]Space and Planetary ScienceAstronomy Astrophysics and CosmologyUNESCO::ASTRONOMÍA Y ASTROFÍSICA::Cosmología y cosmogoniaGamma-ray burst:ASTRONOMÍA Y ASTROFÍSICA [UNESCO]
researchProduct

Finding a 61.0-day orbital period for the HMXB 4U 1036-56 with the Swift-BAT monitoring

2013

Since November 2004, the Burst Alert Telescope on board Swift is producing a monitoring of the entire sky in the 15-150 keV band, recording the timing and spectral behavior of the detected sources. Here we study the properties of the HMXB 4U 1036-56 using both the BAT survey data and those from a Swift-XRT observation. A folding analysis performed on the BAT light curve of the first 100 months of survey unveils a periodic modulation with a period of 61.0 days, tied to the presence in the BAT light curve of several intensity enhancements lasting ~1/4 of P_0. We explain this modulation as the orbital period of the binary system. The position of 4U 1036-56 on the Corbet diagram, the derived se…

High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsSwiftmedia_common.quotation_subjectAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstronomyAstronomy and AstrophysicsAstrophysicsLight curvePower lawlaw.inventionOn boardTelescopeOrbitAtomic orbitalSpace and Planetary ScienceSkylawAstrophysics - High Energy Astrophysical Phenomenacomputermedia_commoncomputer.programming_language
researchProduct

Swiftdiscovery of the orbital period of the high mass X-ray binary IGR J015712−7259 in the Small Magellanic Cloud

2013

In the last years the hard X-ray astronomy has made a significant step forward, thanks to the monitoring of the IBIS/ISGRI telescope on board the INTEGRAL satellite and of the Burst Alert Telescope (BAT) on board of the Swift observatory. This has provided a huge amount of novel information on many classes of sources. We have been exploiting the BAT survey data to study the variability and the spectral properties of the new high mass X-ray binary sources detected by INTEGRAL. In this letter we investigate the properties of IGR J015712-7259. We perform timing analysis on the 88-month BAT survey data and on the XRT pointed observations of this source. We also report on the broad-band 0.2-150 …

PhysicsPhotonAstrophysics::High Energy Astrophysical PhenomenaBinary numberStatic timing analysisAstronomy and AstrophysicsAstrophysicsOrbital periodlaw.inventionTelescopeSpace and Planetary SciencelawObservatorySatelliteSmall Magellanic CloudAstronomy & Astrophysics
researchProduct

The Multi-frequency Robotic facility REM: first results

2004

The REM Observatory, recently installed and commissioned at la Silla Observatory Chile, is the first moderate aperture robotic telescope able to cover simultaneously the visible-NIR (0.45-2.3 microns) wavelength range. Due to its very fast pointing and its full robotization REM is conceived for fast transients observation. The high throughput Infrared Camera (REMIR) and the Visible imaging spectrograph (ROSS), simultaneously fed by a dichroic, allow to collect high S/N data in an unprecedented large spectral range on a telescope of this size. The REMobservatory is an example of a versatile and agile facility necessary complement to large telescopes in fields in which rapid response and/or t…

PhysicsApertureInfraredbusiness.industryAstronomy and AstrophysicsDichroic glasslaw.inventionTelescopeRobotic telescopeOpticsSpace and Planetary SciencelawObservatorybusinessThroughput (business)SpectrographRemote sensingAstronomische Nachrichten
researchProduct

The THESEUS space mission concept: science case, design and expected performances

2018

THESEUS is a space mission concept aimed at exploiting Gamma-Ray Bursts for investigating the early Universe and at providing a substantial advancement of multi-messenger and time-domain astrophysics. These goals will be achieved through a unique combination of instruments allowing GRB and X-ray transient detection over a broad field of view (more than 1sr) with 0.5¿1 arcmin localization, an energy band extending from several MeV down to 0.3¿keV and high sensitivity to transient sources in the soft X-ray domain, as well as on-board prompt (few minutes) follow-up with a 0.7¿m class IR telescope with both imaging and spectroscopic capabilities. THESEUS will be perfectly suited for addressing …

IonizationAtmospheric Sciencecosmological modelCherenkov Telescope Array[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph]AstronomyDark ageMASSIVE SINGLE STARSStar formation rates Gamma ray01 natural sciencesCosmology: observationlocalizationlaw.inventionAstrophysicEinstein Telescopeobservational cosmologylawObservational cosmologyRe-ionizationCosmology: observations; Dark ages; First stars; Gamma-ray: bursts; Re-ionizationLIGOobservations [Cosmology]Telescope010303 astronomy & astrophysicsHigh sensitivityHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsMulti-wavelengthenergy: highsezelegamma-ray burstsCosmology: observationsCosmology: observations; Dark ages; First stars; Gamma-ray: bursts; Re-ionization; Aerospace Engineering; Space and Planetary ScienceAstrophysics::Instrumentation and Methods for Astrophysicsimagingstar: formationburst [Gamma-ray]observatoryGeophysicsDark agesX rays Cosmology: observationAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - High Energy Astrophysical PhenomenasignatureStarTIDAL DISRUPTIONGamma-ray: burstAstrophysics::High Energy Astrophysical PhenomenaSIMILAR-TO 6Socio-culturaleFOS: Physical sciencesAerospace EngineeringGamma-ray: burstsobservation [Cosmology]galaxy: luminosityX-ray astronomy: instrumentation7 CANDIDATE GALAXIESAstrophysics::Cosmology and Extragalactic Astrophysicsgamma ray: burst114 Physical sciencesSettore FIS/03 - Fisica della MateriaTelescopeX-raybursts [Gamma-ray]FIS/05 - ASTRONOMIA E ASTROFISICASettore FIS/05 - Astronomia e AstrofisicaFirst star0103 physical sciences[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]KAGRAInstrumentation and Methods for Astrophysics (astro-ph.IM)Astrophysics::Galaxy AstrophysicsFirst starsLIGHT CURVESEinstein Telescope010308 nuclear & particles physicsGravitational wavegravitational radiationAstronomyAstronomy and Astrophysics115 Astronomy Space scienceCherenkov Telescope ArrayredshiftsensitivityRedshiftNEUTRON-STAR MERGERmessengerVIRGOelectromagneticLUMINOSITY FUNCTIONSpace and Planetary ScienceBLACK-HOLEGeneral Earth and Planetary SciencesGamma-ray burst[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

Sensitivity of the Cherenkov Telescope Array to a dark matter signal from the Galactic centre

2021

Full list of authors: Acharyya, A.; Adam, R.; Adams, C.; Agudo, I.; Aguirre-Santaella, A.; Alfaro, R.; Alfaro, J.; Alispach, C.; Aloisio, R.; Alves Batista, R.; Amati, L.; Ambrosi, G.; Angüner, E. O.; Antonelli, L. A.; Aramo, C.; Araudo, A.; Armstrong, T.; Arqueros, F.; Asano, K.; Ascasíbar, Y. Ashley, M.; Balazs, C.; Ballester, O.; Baquero Larriva, A.; Barbosa Martins, V.; Barkov, M.; Barres de Almeida, U.; Barrio, J. A.; Bastieri, D.; Becerra, J.; Beck, G.; Becker Tjus, J.; Benbow, W.; Benito, M.; Berge, D.; Bernardini, E.; Bernlöhr, K.; Berti, A.; Bertucci, B.; Beshley, V.; Biasuzzi, B.; Biland, A.; Bissaldi, E.; Biteau, J.; Blanch, O.; Blazek, J.; Bocchino, F.; Boisson, C.; Bonneau Arbe…

Cherenkov Telescope ArrayMATÉRIA ESCURAscale: TeVAstronomyatmosphere [Cherenkov counter]dark matter experimentDark matter theoryenergy resolutionGamma ray experimentsParticleAstrophysicscosmic background radiation01 natural sciences7. Clean energyHigh Energy Physics - Phenomenology (hep-ph)benchmarkWIMPHESSenergy: fluxTeV [scale]relativistic [charged particle]gamma ray experimentMAGIC (telescope)Monte CarloEvent reconstructionPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Contractionspatial distributiontrack data analysisPhysicsdensity [dark matter]ClumpyAstrophysics::Instrumentation and Methods for AstrophysicsimagingHigh Energy Physics - Phenomenologydark matter experiments; dark matter theory; gamma ray experiments; galaxy morphologyDark matter experimentsFísica nuclearVERITASAstrophysics - High Energy Astrophysical PhenomenaSimulationsnoiseWIMPAstrophysics::High Energy Astrophysical PhenomenaDark mattersatelliteCosmic background radiationFOS: Physical sciencesAnnihilationdark matter: densityAstrophysics::Cosmology and Extragalactic AstrophysicsCherenkov counter: atmosphereheavy [dark matter]530annihilation [dark matter]GLASTDark matter experiments; Dark matter theory; Galaxy morphology; Gamma ray experimentscosmic radiation [p]0103 physical sciencesCherenkov [radiation]Candidatesddc:530AGNCherenkov radiationRadiative Processesthermal [cross section]010308 nuclear & particles physicsFísicadark matter: annihilationGamma-Ray SignalsCherenkov Telescope Array ; dark matter ; Galactic Center ; TeV gamma-ray astronomyAstronomy and AstrophysicsMassCherenkov Telescope Arrayradiation: CherenkovsensitivityMAGICGalaxyAstronomíadark matter: heavygamma rayp: cosmic radiation[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]correlationcharged particle: relativisticflux [energy]Galaxy morphology/dk/atira/pure/subjectarea/asjc/3100/3103galaxysupersymmetry[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]cross section: thermal
researchProduct