0000000000972922
AUTHOR
Rustam Z. Khaliullin
Microscopic Origins of the Anomalous Melting Behavior of Sodium under High Pressure
X-ray diffraction experiments have shown that sodium exhibits a dramatic pressure-induced drop in melting temperature, which extends from 1000 K at ~30 GPa to as low as room temperature at ~120 GPa. Despite significant theoretical effort to understand the anomalous melting, its origins are still debated. In this work, we reconstruct the sodium phase diagram by using an ab initio quality neural-network potential. Furthermore, we demonstrate that the reentrant behavior results from the screening of interionic interactions by conduction electrons, which at high pressure induces a softening in the short-range repulsion.
Nucleation mechanism for the direct graphite-to-diamond phase transition
Graphite and diamond have comparable free energies, yet forming diamond from graphite is far from easy. In the absence of a catalyst, pressures that are significantly higher than the equilibrium coexistence pressures are required to induce the graphite-to-diamond transition. Furthermore, the formation of the metastable hexagonal polymorph of diamond instead of the more stable cubic diamond is favored at lower temperatures. The concerted mechanism suggested in previous theoretical studies cannot explain these phenomena. Using an ab initio quality neural-network potential we performed a large-scale study of the graphite-to-diamond transition assuming that it occurs via nucleation. The nucleat…
Vibrational Signature of Water Molecules in Asymmetric Hydrogen Bonding Environments
The O–H stretching vibrational modes of water molecules are sensitive to their local environments. Here, we applied effective normal-mode analysis to isolate contributions of each of the two hydrogen atoms to the vibrational modes ν1 and ν3 of water molecules in the liquid phase. We demonstrate that the decoupling of the two contributions fd and the frequency splitting of the vibrational modes Δω13 are inextricably related to the symmetry of the hydrogen bonding environment. We show that ambient liquid water modeled at the density functional level of theory exhibits the characteristics of an asymmetric environment with an average decoupling of 0.82 and a splitting of 137 inverse centimeters…
Microscopic origins of the anomalous melting behaviour of high-pressure sodium
Recent experiments have shown that sodium, a prototype simple metal at ambient conditions, exhibits unexpected complexity under high pressure. One of the most puzzling phenomena in the behaviour of dense sodium is the pressure-induced drop in its melting temperature, which extends from 1000 K at ~30GPa to as low as room temperature at ~120GPa. Despite significant theoretical effort to understand the anomalous melting its origins have remained unclear. In this work, we reconstruct the sodium phase diagram using an ab-initio-quality neural-network potential. We demonstrate that the reentrant behaviour results from the screening of interionic interactions by conduction electrons, which at high…
Efficient Linear-Scaling Density Functional Theory for Molecular Systems
Despite recent progress in linear scaling (LS) density function theory (DFT), the computational cost of the existing LS methods remains too high for a widespread adoption at present. In this work, we exploit nonorthogonal localized molecular orbitals to develop a series of LS methods for molecular systems with a low computational overhead. High efficiency of the proposed methods is achieved with a new robust two-stage variational procedure or by replacing the optimization altogether with an accurate nonself-consistent approach. We demonstrate that, even for challenging condensed-phase systems, the implemented LS methods are capable of extending the range of accurate DFT simulations to molec…
Microscopic properties of liquid water from combined ab initio molecular dynamics and energy decomposition studies
The application of newly developed first-principle modeling techniques to liquid water deepens our understanding of the microscopic origins of its unusual macroscopic properties and behaviour. Here, we review two novel ab initio computational methods: second-generation Car-Parrinello molecular dynamics and decomposition analysis based on absolutely localized molecular orbitals. We show that these two methods in combination not only enable ab initio molecular dynamics simulations on previously inaccessible time and length scales, but also provide unprecedented insights into the nature of hydrogen bonding between water molecules. We discuss recent applications of these methods to water cluste…
On the role of interfacial hydrogen bonds in "on-water" catalysis.
Numerous experiments have demonstrated that many classes of organic reactions exhibit increased reaction rates when performed in heterogeneous water emulsions. Despite enormous practical importance of the observed "on-water" catalytic effect and several mechanistic studies, its microscopic origins remains unclear. In this work, the second generation Car-Parrinello molecular dynamics method is extended to self-consistent charge density-functional based tight-binding in order to study "on-water" catalysis of the Diels-Alder reaction between dimethyl azodicarboxylate and quadricyclane. We find that the stabilization of the transition state by dangling hydrogen bonds exposed at the aqueous inte…
Recent achievements in ab initio modelling of liquid water
The application of newly developed first-principle modeling techniques to liquid water deepens our understanding of the microscopic origins of its unusual macroscopic properties and behaviour. Here, we review two novel ab initio computational methods: second-generation Car-Parrinello molecular dynamics and decomposition analysis based on absolutely localized molecular orbitals. We show that these two methods in combination not only enable ab initio molecular dynamics simulations on previously inaccessible time and length scales, but also provide unprecedented insights into the nature of hydrogen bonding between water molecules. We discuss recent applications of these methods to water cluste…
Nature of the asymmetry in the hydrogen-bond networks of hexagonal ice and liquid water.
The interpretation of the X-ray spectra of water as evidence for its asymmetric structure has challenged the traditional nearly tetrahedral model and initiated an intense debate about the order and symmetry of the hydrogen-bond network in water. Here, we present new insights into the nature of local interactions in ice and liquid water obtained using a first-principle energy decomposition method. A comparative analysis shows that the majority of molecules in liquid water in our simulation exhibit hydrogen-bonding energy patterns similar to those in ice and retain the four-fold coordination with only moderately distorted tetrahedral configurations. Although this result indicates that the tra…
Ab initioquality neural-network potential for sodium
An interatomic potential for high-pressure high-temperature (HPHT) crystalline and liquid phases of sodium is created using a neural-network (NN) representation of the ab initio potential energy surface. It is demonstrated that the NN potential provides an ab initio quality description of multiple properties of liquid sodium and bcc, fcc, cI16 crystal phases in the P-T region up to 120 GPa and 1200 K. The unique combination of computational efficiency of the NN potential and its ability to reproduce quantitatively experimental properties of sodium in the wide P-T range enables molecular dynamics simulations of physicochemical processes in HPHT sodium of unprecedented quality.
Electronic signature of the instantaneous asymmetry in the first coordination shell of liquid water
Interpretation of the X-ray spectra of water as evidence for its asymmetric structure has challenged the conventional symmetric nearly-tetrahedral model and initiated an intense debate about the order and symmetry of the hydrogen bond network in water. Here, we present new insights into the nature of local interactions in water obtained using a novel energy decomposition method. Our simulations reveal that while a water molecule forms, on average, two strong donor and two strong acceptor bonds, there is a significant asymmetry in the energy of these contacts. We demonstrate that this asymmetry is a result of small instantaneous distortions of hydrogen bonds, which appear as fluctuations on …