0000000000973852

AUTHOR

N. Oyama

Physics requirements for the VUV survey spectrometer intended for the divertor radiation monitoring on JT-60SA

JT-60SA is a fusion experiment designed to support the operation of ITER and to investigate how best to optimize the operation of future fusion power plants. For the safe operation of the device, a survey spectrometer observing the plasma from an equatorial port is foreseen to monitor light impurities such as carbon and oxygen, metal impurities and extrinsic impurities injected ad hoc to mitigate the power exhaust problem. A second survey spectrometer, to be designed and constructed within the presented work, positioned on an upper port with a vertical line of sight, will complement the monitoring activity of the first system by measuring the relative contribution of the various impurities …

research product

Simulation of the VUV spectral emission from the JT-60SA divertor

A divertor survey dual-spectrometer is being designed by an EU-Japan team [1] to be installed on JT-60SA [2], the new fusion experiment expected to start operating in 2020. Positioned on an upper port, the primary role of the spectrometer is to analyse the radiation losses in the divertor region and to aid studying the physics of the divertor plasmas, including plasma detachment. Its spatial resolution capability is around 10 cm at the divertor and its two branches together cover the wavelength range from 10 to 130 nm, to satisfy the physics scope [3]. The spectrometer Lines Of Sight (LOS) are mapped onto a 2D SOLEDGE [4] simulations of the divertor region carried out for different density …

research product

Overview of the JET results with the ITER-like wall

Following the completion in May 2011 of the shutdown for the installation of the beryllium wall and the tungsten divertor, the first set of JET campaigns have addressed the investigation of the retention properties and the development of operational scenarios with the new plasma-facing materials. The large reduction in the carbon content (more than a factor ten) led to a much lower Zeff (1.2-1.4) during L- and H-mode plasmas, and radiation during the burn-through phase of the plasma initiation with the consequence that breakdown failures are almost absent. Gas balance experiments have shown that the fuel retention rate with the new wall is substantially reduced with respect to the C wall. T…

research product