0000000000973897

AUTHOR

A. Pietropaolo

showing 4 related works from this author

IRIDE: Interdisciplinary research infrastructure based on dual electron linacs and lasers

2014

This paper describes the scientific aims and potentials as well as the preliminary technical design of RUDE, an innovative tool for multi-disciplinary investigations in a wide field of scientific, technological and industrial applications. IRIDE will be a high intensity "particles factory", based on a combination of high duty cycle radio-frequency superconducting electron linacs and of high energy lasers. Conceived to provide unique research possibilities for particle physics, for condensed matter physics, chemistry and material science, for structural biology and industrial applications, IRIDE will open completely new research possibilities and advance our knowledge in many branches of sci…

Nuclear and High Energy PhysicsHigh energySC Linac;Neutron source;FEL;Compton source;Advanced accelerators concepts;Particle physicsSettore FIS/07 - FISICA APPLICATA (A BENI CULTURALI AMBIENTALI BIOLOGIA E MEDICINA)Advanced accelerators conceptTechnical designNOAdvanced accelerators conceptsParticle physicSC Linac; FEL; Particle physics; Neutron source; Compton source; Advanced accelerators conceptsInstrumentationFELPhysicsSC LinacSettore FIS/01 - Fisica SperimentaleAdvanced accelerators concepts; Compton source; FEL; Neutron source; Particle physics; SC Linac; Instrumentation; Nuclear and High Energy PhysicsParticle physicsAdvanced accelerators concepts; Compton source; FEL; Neutron source; Particle physics; SC Linac; Nuclear and High Energy Physics; InstrumentationCompton sourceNeutron sourceWide fieldSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)Dual (category theory)Free Electron LaserAdvanced accelerators concepts Compton source FEL Neutron source Particle physics SC LinacAdvanced accelerators concepts; Compton source; FEL; Neutron source; Particle physics; SC Linacadvanced accelerators concepts; particle physics; sc linac; compton source; fel; neutron sourceneutron sourcefree electron lasersSystems engineeringFactory (object-oriented programming)Free electron laser
researchProduct

Neutron-induced soft errors in advanced Flash memories

2008

Atmospheric neutrons are a known source of Soft Errors (SE), in static and dynamic CMOS memories. This paper shows for the first time that atmospheric neutrons are able to induce SE in Flash memories as well. Detailed experimental results provide an explanation linking the Floating Gate (FG) cell SE rate to the physics of the neutron-matter interaction. The neutron sensitivity is expected to increase with the number of bits per cell and the reduction of the feature size, but the SE issue is within the limit of current ECC capabilities and will remain so in the foreseeable future.

PhysicsAstrophysics::High Energy Astrophysical PhenomenaHardware_PERFORMANCEANDRELIABILITYFlash memorySEESettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)Computational physicsSettore FIS/03 - Fisica della MateriaReduction (complexity)Flash (photography)CMOSLimit (music)Electronic engineeringNeutronSensitivity (control systems)Error detection and correctionneutron irradiationSEE neutron irradiation
researchProduct

Overview of the JET results

2015

Since the installation of an ITER-like wall, the JET programme has focused on the consolidation of ITER design choices and the preparation for ITER operation, with a specific emphasis given to the bulk tungsten melt experiment, which has been crucial for the final decision on the material choice for the day-one tungsten divertor in ITER. Integrated scenarios have been progressed with the re-establishment of long-pulse, high-confinement H-modes by optimizing the magnetic configuration and the use of ICRH to avoid tungsten impurity accumulation. Stationary discharges with detached divertor conditions and small edge localized modes have been demonstrated by nitrogen seeding. The differences in…

Chemical analysiMagnetic confinementEdge localized modeTokamak:Física [Ciências exactas e naturais]Nuclear engineeringplasma-facing componentsTungsten7. Clean energyiter-like walllaw.inventionheat loadsAlcator C-ModlawPlasma-facing componentalcator C-MODQCPhysicsJet (fluid)Thermally activatedDivertormagnetic confinementMagnetic confinement fusionTokamak deviceerosionCondensed Matter PhysicsChemical erosionPost mortem analysiCondensed Matter Physics; Nuclear and High Energy PhysicsBerylliumAtomic physicstokamaksTokamaksNuclear and High Energy Physicschemistry.chemical_elementImpurity accumulationCondensed Matter PhysicNuclear and High Energy Physics; Condensed Matter PhysicsTungstenFísica Física:Physical sciences [Natural sciences]divertorNuclear fusionNuclear and High Energy PhysicPhysics Physical sciencesGas fuel analysifuel retentionSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)operationOrders of magnitudechemistryJETtransportMagnetic configuration
researchProduct

Overview of the JET results with the ITER-like wall

2013

Following the completion in May 2011 of the shutdown for the installation of the beryllium wall and the tungsten divertor, the first set of JET campaigns have addressed the investigation of the retention properties and the development of operational scenarios with the new plasma-facing materials. The large reduction in the carbon content (more than a factor ten) led to a much lower Zeff (1.2-1.4) during L- and H-mode plasmas, and radiation during the burn-through phase of the plasma initiation with the consequence that breakdown failures are almost absent. Gas balance experiments have shown that the fuel retention rate with the new wall is substantially reduced with respect to the C wall. T…

Nuclear and High Energy PhysicsMaterials scienceREGIMENuclear engineeringchemistry.chemical_element-Condensed Matter PhysicEffective radiated powerTungstenNuclear and High Energy Physics; Condensed Matter PhysicsPedestalPLASMA-FACING COMPONENTSTOKAMAK PLASMASJet (fluid)TUNGSTENDivertorperfomancePlasmaPERFORMANCECondensed Matter PhysicsSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)chemistryBeta (plasma physics)DIVERTORBerylliumAtomic physics
researchProduct