0000000000974589

AUTHOR

M Bolognesi

showing 4 related works from this author

On the molecular structure of human neuroserpin polymers. Coagulation, fragmentation and latentization control serpin aggregation

2012

The polymerization of serpins is at the root of a large class of diseases; the molecular structure of serpin polymers has been recently debated. In this work, we study the polymerization kinetics of human neuroserpin by Fourier Transform Infra Red spectroscopy and by time-lapse Size Exclusion Chromatography. First, we show that two distinct neuroserpin polymers, formed at 45 and 85 °C, display the same isosbestic points in the Amide I band, and therefore share common secondary structure features. We also find a concentration independent polymerization rate at 45 °C suggesting that the polymerization rate limiting step is the formation of an activated monomeric species. The polymer structure…

FTIRSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)Polymerization
researchProduct

Inactivation and polymerization of human neuroserpin

2010

Neuroserpin is an inhibitory enzyme, belonging to the family of serpins and involved in several pathologies, such as ischemia, Alzheimer disease, and FENIB (Familial Encephalopathy with Neuroserpin Inclusion Body). Here, we study the mechanism of neuroserpin inactivation and polymerization by different experimental techniques (static and dynamic light scattering, liquid chromatography, Fourier transform infrared spectroscopy, emission spectroscopy). Our results show that at intermediate temperatures (45-55 °C) neuroserpin forms flexible polymers with a size from a few tens to a few hundreds of nanometers. At high temperatures, above 80 °C, our results reveal a different polymeric form, reac…

human neuroserpin polymerization conformational changesSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)
researchProduct

The beam and detector of the NA62 experiment at CERN

2017

NA62 is a fixed-target experiment at the CERN SPS dedicated to measurements of rare kaon decays. Such measurements, like the branching fraction of the $K^{+} \rightarrow \pi^{+} \nu \bar\nu$ decay, have the potential to bring significant insights into new physics processes when comparison is made with precise theoretical predictions. For this purpose, innovative techniques have been developed, in particular, in the domain of low-mass tracking devices. Detector construction spanned several years from 2009 to 2014. The collaboration started detector commissioning in 2014 and will collect data until the end of 2018. The beam line and detector components are described together with their early …

Particle physicsPhysics - Instrumentation and DetectorsPhysics::Instrumentation and DetectorsFOS: Physical scienceslarge detector systems for particle and astroparticle physicsCalorimeters; Cherenkov detectors; Large detector systems for particle and astroparticle physics; Particle tracking detectors; Instrumentation; Mathematical PhysicsNA62 experimentTracking (particle physics)7. Clean energy01 natural sciencesParticle detectorHigh Energy Physics - ExperimentSettore FIS/04 - Fisica Nucleare e SubnucleareNONuclear physicsmathematical physicsHigh Energy Physics - Experiment (hep-ex)Calorimeters0103 physical sciencesparticle tracking detectorsDetectors and Experimental Techniques010306 general physicsParticle Physicsphysics.ins-detCalorimeters; Cherenkov detectors; large detector systems for particle and astroparticle physics; particle tracking detectors; instrumentation; mathematical physicsPhysicsinstrumentationCalorimeterLarge Hadron Collider010308 nuclear & particles physicsBranching fractionhep-exDetectorCherenkov detectorsInstrumentation and Detectors (physics.ins-det)Particle tracking detectorBeamlineLarge detector systems for particle and astroparticle physicHigh Energy Physics::ExperimentBeam (structure)Particle Physics - ExperimentCherenkov detector
researchProduct

Functional and dysfunctional isoforms of human neuroserpin

2015

Neuroserpin (NS) is a serine protease inhibitor (SERPIN) involved in different neurological pathologies, including the Familial Encephalopathy with Neuroserpin Inclusion Bodies (FENIB), related to the aberrant polymerization of NS mutants. Here we present an in vitro and in silico characterization of native NS and its dysfunctional conformation isoforms: the proteolytically cleaved conformer, the inactive latent conformer, and the polymeric conformer. Using circular dichroism and fluorescence spectroscopy, we present an experimental validation of the latent model and highlight the main structural features of the different conformers. In par- ticular, emission spectra of aromatic residues yi…

human neuroserpinSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)
researchProduct