0000000000975671

AUTHOR

V Vincenti

CATIONIC SLN AS TARGETING DRUG DELIVERY SYSTEMS

Nanoscience and nanotechnology have received much attention in the last decade and they actually form one of the most important fields of technology and innovation. Due to rapid progresses in nanotechnology and biotechnology, nanoparticles have come to be seen as a viable vehicle for the delivery and release of drugs and nucleic acids. Within this field, the use of solid lipid nanoparticles (SLNs) is of particular importance. In particular, cationic SLN are promising non-viral gene delivery carriers suitable for systemic and topic administration. The surface of these nanoparticles is positively charged and the negatively charged nucleic acids are complexed to the their surface. The obtained…

research product

ENTRAPMENT OF TYRPHOSTIN AG 14-78 INTO LIPID NANOPARTICLES IMPROVES ITS ANTITUMOR ACTIVITY AGAINST HUMAN HEPATOCARCINOMA CELLS

research product

CATIONIC SLN AS TARGETING GENE DELIVERY SYSTEMS FOR HEPATOCELLULAR CARCINOMA

Hepatocellular carcinoma (HCC) is the sixth most common cancer worldwide and the third leading cause of cancer-related deaths. In the United States, the incidence of HCC has almost tripled during the past two decades and HCC has become one of the fastest growing cancers. While surgical removal of tumor tissues is an effective approach to protect relatively healthy liver tissue, it is only applicable to a small subset of HCC patients with specific pathological conditions, such as confined tumor mass without portal hypertension. Therefore, there is an urgent need to develop novel therapeutic strategies to treat this deadly disease. Systemic tumor-targeted gene delivery is attracting increasin…

research product