0000000000976120

AUTHOR

Lj Harkness-brennan

First beta-decay spectroscopy of In-135 and new beta-decay branches of In-134

research product

First Accurate Normalization of the β-delayed α Decay of 16N and Implications for the 12C(α,γ)16O Astrophysical Reaction Rate

research product

Role of the Delta Resonance in the Population of a Four-Nucleon State in the 56Fe to 54Fe Reaction at Relativistic Energies

The 54Fe nucleus was populated from a 56Fe beam impinging on a Be target with an energy of E/A=500MeV. The internal decay via γ-ray emission of the 10+ metastable state was observed. As the structure of this isomeric state has to involve at least four unpaired nucleons, it cannot be populated in a simple two-neutron removal reaction from the 56Fe ground state. The isomeric state was produced in the low-momentum (-energy) tail of the parallel momentum (energy) distribution of 54Fe, suggesting that it was populated via the decay of the Δ0 resonance into a proton. This process allows the population of four-nucleon states, such as the observed isomer. Therefore, it is concluded that the observa…

research product

Fast-timing study of the l -forbidden 12+→32+ M1 transition in Sn 129 FAST-TIMING STUDY of the l -FORBIDDEN ⋯ R. LICǎ et al.

© 2016 authors. Published by the American Physical Society.The levels in Sn129 populated from the β- decay of In129 isomers were investigated at the ISOLDE facility of CERN using the newly commissioned ISOLDE Decay Station (IDS). The lowest 12+ state and the 32+ ground state in Sn129 are expected to have configurations dominated by the neutron s12 (l=0) and d32 (l=2) single-particle states, respectively. Consequently, these states should be connected by a somewhat slow l-forbidden M1 transition. Using fast-timing spectroscopy we have measured the half-life of the 12+ 315.3-keV state, T12= 19(10) ps, which corresponds to a moderately fast M1 transition. Shell-model calculations using the CD-…

research product

Beta-delayed proton emission from Mg-20

research product

New beta-decaying state in Bi-214

13 pags., 7 figs., 3 tabs.

research product

(208)po populated through EC/beta(+) decay

The structure of 208Po resulting from the EC/β + decay of 208At was studied at CERN’s ISOLDE Decay Station (IDS). The high statistics afforded by the high yield of 208At and the high efficiency HPGe clusters at the IDS allowed for greater insight into lower intensity transitions and thus significant expansion of the 208Po level scheme. Furthermore, investigation into the isomeric state yielded a new half life 377(9) ns in addition to uncovering new transitions populating the state.

research product