0000000000976772

AUTHOR

Laurent Fuchs

showing 12 related works from this author

Minkowski-Lorentz Spaces Applications: Resolution of Apollonius and Dupin Problems

2019

International audience

Lorentz transformationResolution (electron density)020207 software engineering02 engineering and technology16. Peace & justice01 natural sciences[INFO.INFO-GR]Computer Science [cs]/Graphics [cs.GR]0104 chemical sciences010404 medicinal & biomolecular chemistrysymbols.namesakeTheoretical physicsMinkowski space0202 electrical engineering electronic engineering information engineeringsymbolsComputingMilieux_MISCELLANEOUSMathematics
researchProduct

The non-degenerate Dupin cyclides in the space of spheres using Geometric Algebra

2012

International audience; Dupin cyclides are algebraic surfaces of degree 4 discovered by the French mathematician Pierre-Charles Dupin early in the 19th century and \textcolor{black}{were} introduced in CAD by R. Martin in 1982. A Dupin cyclide can be defined, in two different ways, as the envelope of a one-parameter family of oriented spheres. So, it is very interesting to model the Dupin cyclides in the space of spheres, space wherein each family of spheres can be seen as a conic curve. In this paper, we model the non-degenerate Dupin cyclides and the space of spheres using Conformal Geometric Algebra. This new approach permits us to benefit from the advantages of the use of Geometric Alge…

[ MATH.MATH-GM ] Mathematics [math]/General Mathematics [math.GM]Dupin cyclideDupin cyclide[INFO.INFO-GR] Computer Science [cs]/Graphics [cs.GR]010103 numerical & computational mathematics02 engineering and technologySpace (mathematics)[INFO.INFO-CG]Computer Science [cs]/Computational Geometry [cs.CG]01 natural sciencesGeometric algebra[MATH.MATH-GM]Mathematics [math]/General Mathematics [math.GM]space of spheresAlgebraic surface0202 electrical engineering electronic engineering information engineering0101 mathematicsComputingMilieux_MISCELLANEOUSMathematicsconformal geometric algebraApplied MathematicsDegenerate energy levelsConformal geometric algebra020207 software engineering[ INFO.INFO-GR ] Computer Science [cs]/Graphics [cs.GR][INFO.INFO-GR]Computer Science [cs]/Graphics [cs.GR]AlgebraConic section[ INFO.INFO-CG ] Computer Science [cs]/Computational Geometry [cs.CG]SPHERES
researchProduct

Subdivisions of Ring Dupin Cyclides Using Bézier Curves with Mass Points

2021

Dupin cyclides are algebraic surfaces introduced for the first time in 1822 by the French mathematician Pierre-Charles Dupin. A Dupin cyclide can be defined as the envelope of a one-parameter family of oriented spheres, in two different ways. R. Martin is the first author who thought to use these surfaces in CAD/CAM and geometric modeling. The Minkowski-Lorentz space is a generalization of the space-time used in Einstein’s theory, equipped of the non-degenerate indefinite quadratic form $$Q_{M} ( \vec{u} ) = x^{2} + y^{2} + z^{2} - c^{2} t^{2}$$ where (x, y, z) are the spacial components of the vector $$ \vec{u}$$ and t is the time component of $$ \vec{u}$$ and c is the constant of the spee…

Surface (mathematics)Pure mathematicsDegree (graph theory)Euclidean spaceGeneral MathematicsDupin cyclide020207 software engineering010103 numerical & computational mathematics02 engineering and technologyQuadratic form (statistics)16. Peace & justice01 natural sciences[INFO.INFO-GR]Computer Science [cs]/Graphics [cs.GR]Conic sectionNull vectorAlgebraic surface0202 electrical engineering electronic engineering information engineeringMathematics::Differential Geometry0101 mathematicsMathematics
researchProduct

Estimation géométrique des tangentes à partir de coniques et algèbre géométrique. Exemples sous GAviewer

2018

National audience; Les nombres complexes sont fortement liés à la géométrie plane. Si les rotations, symétries et similitudes planes parmi d'autres s'expriment aisément à l'aide des complexes, le mérite de ce mode de représentation prend tout son sens dans toutes les compositions de ces transformations. Cette algébrisation des problèmes géométriques est le fil directeur de l'article. Elle fournit ainsi des formules de calcul aisément exploitables sur ordinateur. A titre d'exemple, l'article propose un algorithme géométrique de calcul de tangentes à une conique, son adaptation au contexte de l'algèbre géométrique et son implémentation au moyen d'un logiciel dédié. L'algorithme repose sur le …

algèbre géométrique[MATH.MATH-AG] Mathematics [math]/Algebraic Geometry [math.AG]GAviewer[MATH] Mathematics [math][MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG]Mots-clés : coniques[MATH]Mathematics [math]
researchProduct

Espace de Minkowski-Lorentz et des sphères : un état de l'art

2016

International audience; Dans cet article, nous faisons une présentation de l'espace de Minkowski-Lorentz généralisant, à Ê 5 l'espace utilisé dans la théorie de la relativité. Cet espace de dimension 5 contient un paraboloïde de dimension 3 et isométrique à l'espace affine euclidien usuel E 3 , l'ensembles des sphères et plans orientés de E 3 regroupés sur une pseudo-sphère unité de dimension 4. Une premier avantage de cet espace est l'écriture intuitive d'une sphère qui est caractérisée par un point, un vecteur normal en ce point et une courbure. Un deuxième avantage est la manipulation de surfaces canal qui sont représentées par des courbes. Un troisième avantage concernant la simplificat…

faisceauespace de Minkowski-Lorentzespace des sphères[MATH]Mathematics [math]enveloppesMots-clés : Espace de Minkowski-Lorentz[MATH.MATH-MG]Mathematics [math]/Metric Geometry [math.MG][SHS]Humanities and Social Sciences[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI]
researchProduct

Courbe d'une fraction rationnelle et courbes de Bézier à points massiques

2019

Modelling polynomial curves or arcs with Bezier curves can be seen as a basis conversion not so easy for the rational curves. The classical representation of Rational curves based on controlled points with non negative weights as in NURBS does not cover all rational curves. This can be fixed by using the rational Bezier representation by mass points that are weighted points with negative or null weights. The curve of any rational function includes arcs denoted as connex components. These curves and their asymptotic lines are here modelled by the use of mass control points. The asymptotic lines are described by a point that are one weighted point or a vector. An algorithm proposes to represe…

changement de paramètre homographiquepoints massiques[MATH] Mathematics [math][MATH.MATH-MG] Mathematics [math]/Metric Geometry [math.MG][MATH]Mathematics [math][MATH.MATH-MG]Mathematics [math]/Metric Geometry [math.MG]asymptotesCourbe de Bézier rationnelle
researchProduct

Jointure G 2 de deux courbes par une courbe de Bézier rationnelle à points massiques de contrôle

2023

Cet article s'intéresse aux jointures entre deux courbes données par une courbe de Bézier rationnelle quintique à points massiques de contrôle. Pour ce faire, les propriétés différentielles de ces courbes de Bézier fournissent les formules de calcul des courbures en 0 et 1 ainsi que le cercle osculateur idoine. Chaque jointure présente deux degrés de liberté où deux points appartiennent chacun à une droite. Si la jointure G 2 est aussi une jointure C 2 alors la solution est unique. Après le cas d'école d'une jointure entre un cercle et une droite et en guise d'illustration des résultats, deux exemples de jointures entre les boucles d'un Folium de Descartes et d'une Lemniscate de Bernouilli …

cercle osculateurjointurespoints massiquesCourbe de Bézier points massiques courbure cercle osculateur jointuresCourbe de Bézier[INFO] Computer Science [cs]courbure
researchProduct

Espace de Minkowski-Lorentz et des sphères : un état de l’art

2016

International audience; Dans cet article, nous faisons une présentation de l'espace de Minkowski-Lorentz généralisant, a E 5 l'espace utilise dans la théorie de la relativité. Cet espace de dimension 5 contient un paraboloïde de dimension 3 et isométrique a l'espace affine euclidien usuel E 3 , l'ensemble des sphères et plans orientes de E 3 regroupes sur une pseudo-sphère unité de dimension 4. Une premier avantage de cet espace est l'écriture intuitive d'une sphère qui est caractérisée par un point, un vecteur normal en ce point et une courbure. Un deuxième avantage est la manipulation de surfaces canal qui sont représentées par des courbes. Un troisième avantage concernant la simplificati…

[INFO.INFO-AI] Computer Science [cs]/Artificial Intelligence [cs.AI]faisceauespace des sphères[MATH] Mathematics [math]enveloppes[MATH]Mathematics [math][INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI]
researchProduct

Modéliser un demi-cercle et autres questions de poids nuls

2018

National audience; Les courbes de Bézier rationnelles avec des points pondérés peinent à prendre en compte certaines situations élémentaires comme la modélisation d'un demi-cercle avec une courbe de degré 2. Dans cet article nous mon-trons comment l'utilisation de courbes de Bézier rationnelles avec des points massiques résout ce problème. Plus largement, nous montrons aussi que la formulation usuelle de Bézier rationnelles n'est pas complète.

point de contrôle à l'infiniarc de conique.vecteur de contrôlearc de cercle[MATH] Mathematics [math][MATH.MATH-MG] Mathematics [math]/Metric Geometry [math.MG]Courbe à points massiques[MATH]Mathematics [math][MATH.MATH-MG]Mathematics [math]/Metric Geometry [math.MG]Courbe de Bézier rationnelle
researchProduct

Points massiques, cubiques Bézier rationnelles et leur points singuliers

2018

National audience; Cet articleétend l'étude des points singuliers des courbes rationnelles cubiques. Ellle porte sur les points d'inflexion, les points doubles et points de rebroussement. Les courbes cubiques rationnelleś etudiées sont décrites au moyen de la technique des points massiques. Un point massique est soit un point pondéré soit un vecteur pur. Il prend le statut de point de contrôle pour une représentation pa-ramétrique exploitable sur ordinateur dans le domaine de la géométrie de la Conception Assistée par Ordinateur. L'intérêt des points massiques est de pouvoir généraliser le tracé des courbes admettant des points doubles et de contrôler sans calcul supplémentaire l'ensemble d…

Cubiquespoints massiquescourbes de Bézier[MATH] Mathematics [math][MATH.MATH-MG] Mathematics [math]/Metric Geometry [math.MG][MATH]Mathematics [math][MATH.MATH-MG]Mathematics [math]/Metric Geometry [math.MG]
researchProduct

Espace de Minkowski-Lorentz et des sphères : un état de l'art

2016

Dans cet article, nous faisons une présentation de l'espace de Minkowski-Lorentz généralisant, à Ê 5 l'espace utilisé dans la théorie de la relativité. Cet espace de dimension 5 contient un paraboloïde de dimension 3 et isométrique à l'espace affine euclidien usuel E 3 , l'ensembles des sphères et plans orientés de E 3 regroupés sur une pseudo-sphère unité de dimension 4. Une premier avantage de cet espace est l'écriture intuitive d'une sphère qui est caractérisée par un point, un vecteur normal en ce point et une courbure. Un deuxième avantage est la manipulation de surfaces canal qui sont représentées par des courbes. Un troisième avantage concernant la simplification des calculs quadrati…

[INFO.INFO-AI] Computer Science [cs]/Artificial Intelligence [cs.AI]faisceauespace de Minkowski-Lorentzespace des sphères[SHS] Humanities and Social Sciences[MATH.MATH-MG] Mathematics [math]/Metric Geometry [math.MG]enveloppes
researchProduct

Famille à un paramètre de coniques utilisant des courbes de Bézier à poids complexes

2019

The paper deals with conics in a rational Bézier representation based on mass points where the weights are complex numbers here. A special representation of conics using weighted points and vectors offers a calculus flexibility in the handle elementary geometrical transformations as rotations, homotheties and direct similarity transformations. Some examples are proposed to the reader.

[MATH] Mathematics [math][MATH.MATH-MG] Mathematics [math]/Metric Geometry [math.MG]Points massiques complexes[MATH]Mathematics [math][MATH.MATH-MG]Mathematics [math]/Metric Geometry [math.MG]Modélisation géométrique
researchProduct