0000000000976818

AUTHOR

Yangming Li

showing 4 related works from this author

On partial CAP-subgroups of finite groups

2015

Abstract Given a chief factor H / K of a finite group G, we say that a subgroup A of G avoids H / K if H ∩ A = K ∩ A ; if H A = K A , then we say that A covers H / K . If A either covers or avoids the chief factors of some given chief series of G, we say that A is a partial CAP-subgroup of G. Assume that G has a Sylow p-subgroup of order exceeding p k . If every subgroup of order p k , where k ≥ 1 , and every subgroup of order 4 (when p k = 2 and the Sylow 2-subgroups are non-abelian) are partial CAP-subgroups of G, then G is p-soluble of p-length at most 1.

CombinatoricsDiscrete mathematicsNormal subgroupFinite groupAlgebra and Number TheorySubgroupSylow theoremsChief seriesOrder (group theory)Index of a subgroupMathematicsJournal of Algebra
researchProduct

On second minimal subgroups of Sylow subgroups of finite groups

2011

A subgroup H of a finite group G is a partial CAP-subgroup of G if there is a chief series of G such that H either covers or avoids its chief factors. Partial cover and avoidance property has turned out to be very useful to clear up the group structure. In this paper, finite groups in which the second minimal subgroups of their Sylow p-subgroups, p a fixed prime, are partial CAP-subgroups are completely classified.

p-groupComplement (group theory)Finite groupAlgebra and Number TheorySupersoluble groupSylow theoremsCombinatoricsNormal p-complementMathematics::Group TheorySecond minimal subgroupLocally finite groupSimple groupOmega and agemo subgroupFinite groupMATEMATICA APLICADAMathematicsPartial CAP-subgroupPartial cap-group
researchProduct

On self-normalising subgroups of finite groups

2010

[EN] The aim of this paper is to characterise the classes of groups in which every subnormal subgroup is normal, permutable, or S-permutable by the embedding of the subgroups (respectively, subgroups of prime power order) in their normal, permutable, or S-permutable closure, respectively.

Discrete mathematicsFinite groupPst-groupAlgebra and Number TheoryMathematics::CombinatoricsGrups Teoria deAlgebraMathematics::Group TheoryT-groupPt-groupT-groupPermutabilitySylow permutabilityÀlgebraAlgebra over a fieldFinite groupPermutable closureSubnormal closureMATEMATICA APLICADAGroup theoryMathematics
researchProduct

On the supersoluble hypercentre of a finite group

2016

[EN] We give some sufficient conditions for a normal p-subgroup P of a finite group G to have every G-chief factor below it cyclic. The S-permutability of some p-subgroups of O^p(G)plays an important role. Some known results can be reproved and some others appear as corollaries of our main theorems.

Discrete mathematicsFinite groupP-supersoluble groupGeneral MathematicsS-semipermutable subgroup010102 general mathematicsGrups Teoria de01 natural sciencesMathematics::Group Theory0103 physical sciences010307 mathematical physicsFinite group0101 mathematicsMATEMATICA APLICADAMatemàticaMathematicsMonatshefte für Mathematik
researchProduct