A statistical analysis of the three-fold evolution of genomic compression through frame overlaps in prokaryotes
Abstract Background Among microbial genomes, genetic information is frequently compressed, exploiting redundancies in the genetic code in order to store information in overlapping genes. We investigate the length, phase and orientation properties of overlap in 58 prokaryotic species evaluating neutral and selective mechanisms of evolution. Results Using a variety of statistical null models we find patterns of compressive coding that can not be explained purely in terms of the selective processes favoring genome minimization or translational coupling. The distribution of overlap lengths follows a fat-tailed distribution, in which a significant proportion of overlaps are in excess of 100 base…