0000000000978025

AUTHOR

Nina Hillen

Exploring the MHC-peptide matrix of central tolerance in the human thymus

Ever since it was discovered that central tolerance to self is imposed on developing T cells in the thymus through their interaction with self-peptide major histocompatibility complexes on thymic antigen-presenting cells, immunologists have speculated about the nature of these peptides, particularly in humans. Here, to shed light on the so-far unknown human thymic peptide repertoire, we analyse peptides eluted from isolated thymic dendritic cells, dendritic cell-depleted antigen-presenting cells and whole thymus. Bioinformatic analysis of the 842 identified natural major histocompatibility complex I and II ligands reveals significant cross-talk between major histocompatibility complex-class…

research product

Features of TAP-independent MHC class I ligands revealed by quantitative mass spectrometry.

TAP is responsible for transferring cytosolic peptides into the ER, where they can be loaded onto MHC molecules. Deletion of TAP results in a drastic reduction of MHC class I surface expression and alters the presented peptide pattern. This key molecule in antigen processing is tackled by several viruses and lost in some tumors, rendering the altered cells less vulnerable to T cell-based immune surveillance. Using the TAP-deficient cell line LCL721.174 and its TAP-expressing progenitor cell line LCL721.45, we identified and quantified more than 160 HLA ligands, 50 of which were presented TAP-independently. Peptides which were predominantly presented on the TAP-deficient LCL721.174 cell line…

research product