0000000000981306

AUTHOR

B. Martinez

The role of internal corporate governance mechanisms on default risk: A systematic review for different institutional settings

Recent financial downturns, characterized by the significant failures of firms, have revealed the need to control credit risk. Latest literature has shown that weak corporate governance structures are related to high levels of default risk, leading to financial instability. In this context, we aim to summarize the literature that focuses on the role that internal corporate governance plays in the credit risk of firms, specifically considering three corporate governance components: ownership structure, board structure and financial stakeholders’ rights and relations. Additionally, we analyse whether the effectiveness of the internal mechanisms depends on particular key factors, especially th…

research product

Synchronization of the distributed readout frontend electronics of the Baby MIND detector

Baby MIND is a new downstream muon range detector for the WGASCI experiment. This article discusses the distributed readout system and its timing requirements. The paper presents the design of the synchronization subsystem and the results of its test.

research product

Baby MIND: a magnetized segmented neutrino detector for the WAGASCI experiment

T2K (Tokai-to-Kamioka) is a long-baseline neutrino experiment in Japan designed to study various parameters of neutrino oscillations. A near detector complex (ND280) is located 280~m downstream of the production target and measures neutrino beam parameters before any oscillations occur. ND280's measurements are used to predict the number and spectra of neutrinos in the Super-Kamiokande detector at the distance of 295~km. The difference in the target material between the far (water) and near (scintillator, hydrocarbon) detectors leads to the main non-cancelling systematic uncertainty for the oscillation analysis. In order to reduce this uncertainty a new WAter-Grid-And-SCintillator detector …

research product

Baby MIND: A Magnetised Spectrometer for the WAGASCI Experiment

The WAGASCI experiment being built at the J-PARC neutrino beam line will measure the difference in cross sections from neutrinos interacting with a water and scintillator targets, in order to constrain neutrino cross sections, essential for the T2K neutrino oscillation measurements. A prototype Magnetised Iron Neutrino Detector (MIND), called Baby MIND, is being constructed at CERN to act as a magnetic spectrometer behind the main WAGASCI target to be able to measure the charge and momentum of the outgoing muon from neutrino charged current interactions.

research product

Baby MIND Experiment Construction Status

Baby MIND is a magnetized iron neutrino detector, with novel design features, and is planned to serve as a downstream magnetized muon spectrometer for the WAGASCI experiment on the T2K neutrino beam line in Japan. One of the main goals of this experiment is to reduce systematic uncertainties relevant to CP-violation searches, by measuring the neutrino contamination in the anti-neutrino beam mode of T2K. Baby MIND is currently being constructed at CERN, and is planned to be operational in Japan in October 2017.

research product