0000000000981424

AUTHOR

Caijin Huang

showing 4 related works from this author

Tuning of an Optical Dimer Nanoantenna by Electrically Controlling Its Load Impedance

2009

International audience; Optical antennas are elementary units used to direct optical radiation to the nanoscale. Here we demonstrate an active control over individual antenna performances by an external electrical trigger. We find that by an in-plane command of an anisotropic load medium, the electromagnetic interaction between individual elements constituting an optical antenna can be controlled, resulting in a strong polarization and tuning response. An active command of the antenna is a prerequisite for directing light wave through the utilization of such a device.

Materials scienceNanostructureBioengineering02 engineering and technologyMETAL NANOPARTICLESLIQUID-CRYSTALS01 natural sciencesPLASMON RESONANCES010309 opticsOptics[ PHYS.COND.CM-MSQHE ] Physics [physics]/Condensed Matter [cond-mat]/Mesoscopic Systems and Quantum Hall Effect [cond-mat.mes-hall]0103 physical sciencesGeneral Materials Science[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/MicroelectronicsANTENNAAnisotropyNanoscopic scale[PHYS.COND.CM-MSQHE]Physics [physics]/Condensed Matter [cond-mat]/Mesoscopic Systems and Quantum Hall Effect [cond-mat.mes-hall]Computer Science::Information Theorybusiness.industryPAIRSMechanical EngineeringGeneral ChemistryInput impedance021001 nanoscience & nanotechnologyCondensed Matter PhysicsPolarization (waves)LIGHT-SCATTERINGFREEDERICKSZ TRANSITIONNanoelectronics[SPI.OPTI]Engineering Sciences [physics]/Optics / PhotonicOptical radiation[ SPI.NANO ] Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics[ SPI.OPTI ] Engineering Sciences [physics]/Optics / PhotonicAntenna (radio)NANOCIRCUIT0210 nano-technologybusinessEMISSION
researchProduct

Surface plasmon interference excited by tightly focused laser beams

2007

International audience; We show that interfering surface plasmon polaritons can be excited with a focused laser beam at normal incidence to a plane metal film. No protrusions or holes are needed in this excitation scheme. Depending on the axial position of the focus, the intensity distribution on the metal surface is either dominated by interferences between counterpropagating plasmons or by a two-lobe pattern characteristic of localized surface plasmon excitation. Our experiments can be accurately explained by use of the angular spectrum representation and provide a simple means for locally exciting standing surface plasmon polaritons.

[SPI.OPTI] Engineering Sciences [physics]/Optics / Photonic[SPI.NANO] Engineering Sciences [physics]/Micro and nanotechnologies/MicroelectronicsNanophotonicsPhysics::Optics02 engineering and technology01 natural scienceslaw.invention010309 opticsOpticslaw[ PHYS.COND.CM-MSQHE ] Physics [physics]/Condensed Matter [cond-mat]/Mesoscopic Systems and Quantum Hall Effect [cond-mat.mes-hall]0103 physical sciencesSurface plasmon resonance[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/MicroelectronicsPlasmon[PHYS.COND.CM-MSQHE]Physics [physics]/Condensed Matter [cond-mat]/Mesoscopic Systems and Quantum Hall Effect [cond-mat.mes-hall]Physicsbusiness.industrySurface plasmon021001 nanoscience & nanotechnologyLaserSurface plasmon polaritonAtomic and Molecular Physics and Optics[PHYS.COND.CM-MSQHE] Physics [physics]/Condensed Matter [cond-mat]/Mesoscopic Systems and Quantum Hall Effect [cond-mat.mes-hall]Angular spectrum method[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic[ SPI.NANO ] Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics[ SPI.OPTI ] Engineering Sciences [physics]/Optics / Photonic0210 nano-technologybusinessLocalized surface plasmon
researchProduct

Far-field imaging of the electromagnetic local density of optical states.

2008

International audience; We introduce a new experimental method to measure the local electromagnetic density of states (LDOS) by integrating the differential scattering cross section. The signal detected essentially reflects the intrinsic scattering response of the photonic structures and renders the partial LDOS dominated by evanescent modes. We give a theoretical understanding of the LDOS image formation and show a qualitative agreement between experimental images and theoretical maps. This approach can be practically applied to the direct measurement of an optical antenna's scattering efficiency and can provide valuable information for designing optimum structures utilized in radiative de…

[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics]Image formationDYNAMICS[SPI.OPTI] Engineering Sciences [physics]/Optics / Photonic[SPI.NANO] Engineering Sciences [physics]/Micro and nanotechnologies/MicroelectronicsPhysics::OpticsNear and far field02 engineering and technology01 natural sciencesSignal010309 opticsOptics[ PHYS.COND.CM-MSQHE ] Physics [physics]/Condensed Matter [cond-mat]/Mesoscopic Systems and Quantum Hall Effect [cond-mat.mes-hall]0103 physical sciences[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics[PHYS.COND.CM-MSQHE]Physics [physics]/Condensed Matter [cond-mat]/Mesoscopic Systems and Quantum Hall Effect [cond-mat.mes-hall]Photonic crystalPhysics[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]SPECTROSCOPYbusiness.industryScatteringSURFACE-PLASMONSPONTANEOUS EMISSIONMICROSCOPY021001 nanoscience & nanotechnologyAtomic and Molecular Physics and Optics[PHYS.COND.CM-MSQHE] Physics [physics]/Condensed Matter [cond-mat]/Mesoscopic Systems and Quantum Hall Effect [cond-mat.mes-hall]Density of states[SPI.OPTI]Engineering Sciences [physics]/Optics / PhotonicNear-field scanning optical microscope[ SPI.NANO ] Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics[ SPI.OPTI ] Engineering Sciences [physics]/Optics / PhotonicPhotonics0210 nano-technologybusinessOptics letters
researchProduct

Gain, detuning, and radiation patterns of nanoparticle optical antennas

2008

International audience; For their capability to localize and redirect electromagnetic field, metal nanoparticles have been recently viewed as efficient nanoantenna operating in the optical regime. In this article, we experimentally investigated the optical responses of coupled gold antenna pairs and measured the critical parameters defining antenna characteristics: resonant frequencies and bandwidths, detuning and gains, and radiation patterns.

FAR-FIELDElectromagnetic fieldPLASMONIC NANOPARTICLEPhysics::OpticsNanoparticle02 engineering and technologySILVER NANOPARTICLESRadiation01 natural sciencesNANOANTENNASOptics[ PHYS.COND.CM-MSQHE ] Physics [physics]/Condensed Matter [cond-mat]/Mesoscopic Systems and Quantum Hall Effect [cond-mat.mes-hall]0103 physical sciencesSCATTERING[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics010306 general physicsMetal nanoparticles[PHYS.COND.CM-MSQHE]Physics [physics]/Condensed Matter [cond-mat]/Mesoscopic Systems and Quantum Hall Effect [cond-mat.mes-hall]Physics[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]business.industryRESONANCE021001 nanoscience & nanotechnologyCondensed Matter PhysicsDIMERSElectronic Optical and Magnetic MaterialsSINGLE[SPI.OPTI]Engineering Sciences [physics]/Optics / PhotonicQuasiparticleOptoelectronics[ SPI.NANO ] Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics[ SPI.OPTI ] Engineering Sciences [physics]/Optics / PhotonicAntenna (radio)EMISSION0210 nano-technologybusinessNEAR-FIELDPhysical Review B
researchProduct