0000000000982047
AUTHOR
Nicolas Bellouin
Intercomparison and evaluation of global aerosol microphysical properties among AeroCom models of a range of complexity
Many of the next generation of global climate models will include aerosol schemes which explicitly simulate the microphysical processes that determine the particle size distribution. These models enable aerosol optical properties and cloud condensation nuclei (CCN) concentrations to be determined by fundamental aerosol processes, which should lead to a more physically based simulation of aerosol direct and indirect radiative forcings. This study examines the global variation in particle size distribution simulated by 12 global aerosol microphysics models to quantify model diversity and to identify any common biases against observations. Evaluation against size distribution measurements from…
The AeroCom evaluation and intercomparison of organic aerosol in global models
This paper evaluates the current status of global modeling of the organic aerosol (OA) in the troposphere and analyzes the differences between models as well as between models and observations. Thirty-one global chemistry transport models (CTMs) and general circulation models (GCMs) have participated in this intercomparison, in the framework of AeroCom phase II. The simulation of OA varies greatly between models in terms of the magnitude of primary emissions, secondary OA (SOA) formation, the number of OA species used (2 to 62), the complexity of OA parameterizations (gas-particle partitioning, chemical aging, multiphase chemistry, aerosol microphysics), and the OA physical, chemical and op…
Regional and seasonal radiative forcing by perturbations to aerosol and ozone precursor emissions
Abstract. Dedicated model simulations by four general circulation and chemistry-transport models are used to establish a matrix of specific radiative forcing, defined as the radiative forcing per unit change in mass emitted, as a function of the near-term climate forcer emitted, its source region, and the season of emission. Emissions of eight near-term climate forcers are reduced: sulphur dioxide, the precursor to sulphate aerosols; black carbon aerosols; organic carbon aerosols; ammonia, a precursor to nitrate aerosols; methane; and nitrogen oxides, carbon monoxide, and volatile organic compounds, the precursors to ozone and to secondary organic aerosols. The focus is on two source region…